A Novel Local‐Inertial Formulation Representing Subgrid Scale Topographic Effects for Urban Flood Simulation

Author:

Nithila Devi N.12ORCID,Kuiry Soumendra Nath2ORCID

Affiliation:

1. Section Hydrology GFZ German Research Centre for Geoscience Potsdam Germany

2. Hydraulic and Water Resources Engineering Division Department of Civil Engineering Indian Institute of Technology Madras Chennai India

Abstract

AbstractThe local‐inertial approximations of the shallow water equations (SWEs) have been used for flood forecasting at larger spatial scales owing to the improved computational efficiency and similar accuracy compared to the full 2D SWEs. With the availability of high‐resolution elevation data, the complex terrain of urban areas with various small‐scale features is represented well. Even for a local‐inertial model, utilizing such high‐resolution elevation data in flood simulations of urbanized areas increases the computational cost. A subgrid‐based local‐inertial formulation that permits large numerical grid size for computations while preserving the within‐grid topography is proposed to circumvent this. The subgrid topography can be incorporated into the coarse numerical grid computations by estimating the hydraulic properties, namely, volume and face area, based on water surface elevation variations of the associated high‐resolution terrain. The pre‐stored hydraulic properties are then used to dynamically update the hydraulic variables during the execution of the local‐inertial model. Idealized and real‐world test cases were simulated to illustrate the advantages of the proposed model. The proposed subgrid model performs better in capturing flood depth around subgrid‐scale features such as streets, highways, minor canals, etc., than the simple grid‐averaged local‐inertial models of the same grid size. The proposed model is faster than the existing local‐inertial model (e.g., LISFLOOD‐FP) (∼21–34 times) and the full 2D model (e.g., HEC‐RAS 2D) (∼361–660 times) of similar accuracy in the slow‐rising flood applications. Thus, the subgrid local‐inertial model holds promise in real‐time flood inundation forecasting, resolving smaller urban features.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3