Abstract
Abstract. Permafrost temperatures are increasing in Alaska due to climate change and in some cases permafrost is thawing and degrading. In areas where degradation has already occurred the effects can be dramatic, resulting in changing ecosystems, carbon release, and damage to infrastructure. However, in many areas we lack baseline data, such as subsurface temperatures, needed to assess future changes and potential risk areas. Besides climate, the physical properties of the vegetation cover and subsurface material have a major influence on the thermal state of permafrost. These properties are often directly related to the type of ecosystem overlaying permafrost. In this paper we demonstrate that classifying the landscape into general ecotypes is an effective way to scale up permafrost thermal data collected from field monitoring sites. Additionally, we find that within some ecotypes the absence of a moss layer is indicative of the absence of near-surface permafrost. As a proof of concept, we used the ground temperature data collected from the field sites to recode an ecotype land cover map into a map of mean annual ground temperature ranges at 1 m depth based on analysis and clustering of observed thermal regimes. The map should be useful for decision making with respect to land use and understanding how the landscape might change under future climate scenarios.
Subject
Earth-Surface Processes,Water Science and Technology
Reference41 articles.
1. Barnhart, T. B. and Crosby, B. T.: Comparing two methods of surface change detection on an evolving thermokarst using high-temporal-frequency terrestrial laser scanning, Selawik River, Alaska, Remote Sens., 5, 2813–2837, https://doi.org/10.3390/rs5062813, 2013.
2. Cable, W. and Romanovsky, V.: Network of Permafrost Observatories in Western Alaska, NSF Arctic Data Center, https://doi.org/10.18739/A24H2B, 2016.
3. Carlson, H.: Calculation of depth of thaw in frozen ground, Highway Research Board Special Report, Highway Research Board, Washington, D.C., USA, 192–223, 1952.
4. Dingman, S. and Koutz, F.: Relations among vegetation, permafrost, and potential insolation in central Alaska, Arct. Alp. Res., 6, 37–47, 1974.
5. Fovell, R. G.: Consensus Clustering of U.S. Temperature and Precipitation Data, J. Climate, 10, 1405–1427, https://doi.org/10.1175/1520-0442(1997)010<1405:CCOUST>2.0.CO;2, 1997.
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献