Excess Ground Ice Profiles in Continuous Permafrost Mapped From InSAR Subsidence

Author:

Zwieback S.12ORCID,Iwahana G.3ORCID,Sakhalkar S.12ORCID,Biessel R.12ORCID,Taylor S.1,Meyer F. J.12ORCID

Affiliation:

1. Geophysical Institute, University of Alaska Fairbanks Fairbanks AK USA

2. Department of Geosciences University of Alaska Fairbanks Fairbanks AK USA

3. International Arctic Research Center, University of Alaska Fairbanks Fairbanks AK USA

Abstract

AbstractExcess ground ice formation and melt drive surface heave and settlement, and are critical components of the water balance in Arctic soils. Despite the importance of excess ice for the geomorphology, hydrology and biogeochemistry of permafrost landscapes, we lack fine‐scale estimates of excess ice profiles. Here, we introduce a Bayesian inversion method based on remotely sensed subsidence. It retrieves near‐surface excess ice profiles by probing the ice content at increasing depths as the thaw front deepens over summer. Ice profiles estimated from Sentinel‐1 interferometric synthetic aperture radar (InSAR) subsidence observations at 80 m resolution were spatially associated with the surficial geology in two Alaskan regions. In most geological units, the estimated profiles were ice poor in the central and, to a lesser extent, the upper active layer. In a warm summer, units with ice‐rich permafrost had elevated inferred ice contents at the base of the active layer and the (previous years') upper permafrost. The posterior uncertainty and accuracy varied with depth. In simulations, they were best (≲0.1) in the central active layer, deteriorating (≳0.2) toward the surface and permafrost. At two sites in the Brooks Foothills, Alaska, the estimates compared favorably to coring‐derived profiles down to 35 cm, while the increase in excess ice below the long‐term active layer thickness of 40 cm was only reproduced in a warm year. Pan‐Arctic InSAR observations enable novel observational constraints on the susceptibility of permafrost landscapes to terrain instability and on the controls, drivers and consequences of ground ice formation and loss.

Funder

National Geospatial-Intelligence Agency

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3