Author:
Slapak R.,Nilsson H.,Waara M.,André M.,Stenberg G.,Barghouthi I. A.
Abstract
Abstract. We use the Cluster spacecraft to study three events with intense waves and energetic oxygen ions (O+) in the high altitude cusp and mantle. The ion energies considered are of the order 1000 eV and higher, observed above an altitude of 8 earth radii together with high wave power at the O+ gyrofrequency. We show that heating by waves can explain the observed high perpendicular energy of O+ ions, using a simple gyroresonance model and 25–45% of the observed wave spectral density at the gyrofrequency. This is in contrast to a recently published study where the wave intensity was too low to explain the observed high altitude ion energies. Long lasting cases (>10 min) of high perpendicular-to-parallel temperature ratios are sometimes associated with low wave activity, suggesting that high perpendicular-to-parallel temperature ratio is not a good indicator of local heating. Using multiple spacecraft, we show that the regions of enhanced wave activity are at least one order of magnitude larger than the gyroradius of the heated ions.
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献