Density and temperature of energetic electrons in the Earth's magnetotail derived from high-latitude GPS observations during the declining phase of the solar cycle

Author:

Denton M. H.,Cayton T. E.

Abstract

Abstract. Single relativistic-Maxwellian fits are made to high-latitude GPS-satellite observations of energetic electrons for the period January 2006–November 2010; a constellation of 12 GPS space vehicles provides the observations. The derived fit parameters (for energies ~0.1–1.0 MeV), in combination with field-line mapping on the nightside of the magnetosphere, provide a survey of the energetic electron density and temperature distribution in the magnetotail between McIlwain L-values of L=6 and L=22. Analysis reveals the characteristics of the density-temperature distribution of energetic electrons and its variation as a function of solar wind speed and the Kp index. The density-temperature characteristics of the magnetotail energetic electrons are very similar to those found in the outer electron radiation belt as measured at geosynchronous orbit. The energetic electron density in the magnetotail is much greater during increased geomagnetic activity and during fast solar wind. The total electron density in the magnetotail is found to be strongly correlated with solar wind speed and is at least a factor of two greater for high-speed solar wind (VSW=500–1000 km s−1) compared to low-speed solar wind (VSW=100–400 km s−1). These results have important implications for understanding (a) how the solar wind may modulate entry into the magnetosphere during fast and slow solar wind, and (b) if the magnetotail is a source or a sink for the outer electron radiation belt.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3