Cooling flow regime of a plasma thermal quench

Author:

Zhang YanzengORCID,Li Jun,Tang Xian-Zhu

Abstract

Abstract A large class of Laboratory, Space, and Astrophysical plasmas is nearly collisionless. When a localized energy or particle sink, for example, in the form of a radiative cooling spot or a black hole, is introduced into such a plasma, it can trigger a plasma thermal collapse, also known as a thermal quench in tokamak fusion. Here we show that the electron thermal conduction in such a nearly collisionless plasma follows the convective energy transport scaling in itself or in its spatial gradient, due to the constraint of ambipolar transport. As a result, a robust cooling flow aggregates mass toward the cooling spot and the thermal collapse of the surrounding plasma takes the form of four propagating fronts that originate from the radiative cooling spot, along the magnetic field line in a magnetized plasma. The slowest one, which is responsible for deep cooling, is a shock front.

Funder

U.S. Department of Energy Office of Fusion Energy Sciences and Office of Advanced Scientific Computing Research

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3