Electron heat flux and propagating fronts in plasma thermal quench via ambipolar transport

Author:

Zhang Yanzeng1ORCID,Li Jun12ORCID,Tang Xian-Zhu1ORCID

Affiliation:

1. Theoretical Division, Los Alamos National Laboratory 1 , Los Alamos, New Mexico 87545, USA

2. School of Nuclear Science and Technology, University of Science and Technology of China 2 , Hefei, Anhui 230026, China

Abstract

The thermal collapse of a nearly collisionless plasma interacting with a cooling spot, in which the electron parallel heat flux plays an essential role, is both theoretically and numerically investigated. We show that such thermal collapse, which is known as thermal quench in tokamaks, comes about in the form of propagating fronts, originating from the cooling spot, along magnetic field lines. The slow fronts, propagating with local ion sound speed, limit the aggressive cooling of plasma, which is accompanied by a plasma cooling flow toward the cooling spot. The extraordinary physics underlying such a cooling flow is that the fundamental constraint of ambipolar transport along the field line limits the spatial gradient of electron thermal conduction flux to the much weaker convective scaling, as opposed to the free-streaming scaling, so that a large electron temperature and, hence, pressure gradient can be sustained. The last ion front for a radiative cooling spot is a shock front where cold but flowing ions meet hot ions.

Funder

Advanced Scientific Computing Research

Fusion Energy Sciences

National Energy Research Scientific Computing Center

LANL Institutional computing program

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3