A nonlinear data-driven approach to bias correction of XCO2 for NASA's OCO-2 ACOS version 10
-
Published:2023-11-29
Issue:23
Volume:16
Page:5725-5748
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Keely William R.ORCID, Mauceri SteffenORCID, Crowell SeanORCID, O'Dell Christopher W.
Abstract
Abstract. Measurements of column-averaged dry air mole fraction of CO2 (termed XCO2) from the Orbiting Carbon Observatory-2 (OCO-2) contain systematic errors and regional-scale biases, often induced by forward model error or nonlinearity in the retrieval. Operationally, these biases are corrected for by a multiple linear regression model fit to co-retrieved variables that are highly correlated with XCO2 error. The operational bias correction is fit in tandem with a hand-tuned quality filter which limits error variance and reduces the regime of interaction between state variables and error to one that is largely linear. While the operational correction and filter are successful in reducing biases in retrievals, they do not allow for throughput or correction of data in which biases become nonlinear in predictors or features. In this paper, we demonstrate a clear improvement in the reduction in error variance over the operational correction by using a set of nonlinear machine learning models, one for land and one for ocean soundings. We further illustrate how the operational quality filter can be relaxed when used in conjunction with a nonlinear bias correction, which allows for an increase in sounding throughput by 14 % while maintaining the residual error in the operational correction. The method can readily be applied to future Atmospheric CO2 Observations from Space (ACOS) algorithm updates, to OCO-2's companion instrument OCO-3, and to other retrieved atmospheric state variables of interest.
Funder
National Aeronautics and Space Administration
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference73 articles.
1. Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems, IEEE T. Geosci. Remote, 41, 253–264, https://doi.org/10.1109/tgrs.2002.808356, 2003. 2. Blumenstock, T., Hase, F., Schneider, M., Garcia, O. E., and Sepulveda, E.: TCCON data from Iza na (ES), Release GGG2014R1, TCCON data archive, CaltechDATA [data set], https://doi.org/10.14291/TCCON.GGG2014.IZANA01.R1, 2017. 3. Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Nöel, S., Rozanov, V. V., Chance, K. V., and Goede, A.: SCIAMACHY—Mission objectives and measurement modes, J. Atmos. Sci., 56, 127–150, https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999. 4. Breiman, L.: Classification and Regression Trees, 1st edn., Routledge, New York, https://doi.org/10.1201/9781315139470, 1984. 5. CAMS (Copernicus Atmosphere Monitoring Service): Validation report for the CO2 fluxes estimated by atmospheric inversion, v18r2, Version 1.0, https://atmosphere.copernicus.eu/sites/default/files/2019-08/CAMS73_2018SC1_D73.1.4.1-2018-v1_201907_v1.pdf (last access: 10 January 2022), 2021.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|