Toward Low‐Latency Estimation of Atmospheric CO2 Growth Rates Using Satellite Observations: Evaluating Sampling Errors of Satellite and In Situ Observing Approaches

Author:

Pandey Sudhanshu1ORCID,Miller John B.2ORCID,Basu Sourish34ORCID,Liu Junjie15ORCID,Weir Brad36ORCID,Byrne Brendan1ORCID,Chevallier Frédéric7ORCID,Bowman Kevin W.18ORCID,Liu Zhiqiang9ORCID,Deng Feng10ORCID,O’Dell Christopher W.11ORCID,Chatterjee Abhishek1ORCID

Affiliation:

1. Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA

2. NOAA Global Monitoring Laboratory Boulder CO USA

3. NASA Goddard Space Flight Center Global Modeling and Assimilation Office Greenbelt MD USA

4. Earth System Science Interdisciplinary Center College Park MD USA

5. Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA

6. Morgan State University Baltimore MD USA

7. Laboratoire des Sciences du Climat et de L’Environnement LSCE/IPSL CEA‐CNRS‐UVSQ Université Paris‐Saclay Gif‐sur‐Yvette France

8. Joint Institute for Regional Earth System Science and Engineering University of California Los Angeles CA USA

9. CMA Key Open Laboratory of Transforming Climate Resources to Economy Chongqing Institute of Meteorological Sciences Chongqing China

10. Department of Physics University of Toronto Toronto ON Canada

11. Cooperative Institute for Research in the Atmosphere Colorado State University Fort Collins CO USA

Abstract

AbstractThe atmospheric CO2 growth rate is a fundamental measure of climate forcing. NOAA's growth rate estimates, derived from in situ observations at the marine boundary layer (MBL), serve as the benchmark in policy and science. However, NOAA's MBL‐based method encounters challenges in accurately estimating the whole‐atmosphere CO2 growth rate at sub‐annual scales. Here we introduce the Growth Rate from Satellite Observations (GRESO) method as a complementary approach to estimate the whole‐atmosphere CO2 growth rate utilizing satellite data. Satellite CO2 observations offer extensive atmospheric coverage that extends the capability of the current NOAA benchmark. We assess the sampling errors of the GRESO and NOAA methods using 10 atmospheric transport model simulations. The simulations generate synthetic OCO‐2 satellite and NOAA MBL data for calculating CO2 growth rates, which are compared against the global sum of carbon fluxes used as model inputs. We find good performance for the NOAA method (R = 0.93, RMSE = 0.12 ppm year−1 or 0.25 PgC year−1). GRESO demonstrates lower sampling errors (R = 1.00; RMSE = 0.04 ppm year−1 or 0.09 PgC year−1). Additionally, GRESO shows better performance at monthly scales than the NOAA method (R = 0.76 vs. 0.47, respectively). Due to CO2's atmospheric longevity, the NOAA method accurately captures growth rates over 5‐year intervals. GRESO's robustness across partial coverage configurations (ocean or land data) shows that satellites can be promising tools for low‐latency CO2 growth rate information, provided the systematic biases are minimized using in situ observations. Along with accurate and calibrated NOAA in situ data, satellite‐derived growth rates can provide information about the global carbon cycle at sub‐annual scales.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3