Validation of MIPAS ClONO<sub>2</sub> measurements
-
Published:2007-01-18
Issue:1
Volume:7
Page:257-281
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Höpfner M.,von Clarmann T.,Fischer H.,Funke B.,Glatthor N.,Grabowski U.,Kellmann S.,Kiefer M.,Linden A.,Milz M.,Steck T.,Stiller G. P.,Bernath P.,Blom C. E.,Blumenstock Th.,Boone C.,Chance K.,Coffey M. T.,Friedl-Vallon F.,Griffith D.,Hannigan J. W.,Hase F.,Jones N.,Jucks K. W.,Keim C.,Kleinert A.,Kouker W.,Liu G. Y.,Mahieu E.,Mellqvist J.,Mikuteit S.,Notholt J.,Oelhaf H.,Piesch C.,Reddmann T.,Ruhnke R.,Schneider M.,Strandberg A.,Toon G.,Walker K. A.,Warneke T.,Wetzel G.,Wood S.,Zander R.
Abstract
Abstract. Altitude profiles of ClONO2 retrieved with the IMK (Institut für Meteorologie und Klimaforschung) science-oriented data processor from MIPAS/Envisat (Michelson Interferometer for Passive Atmospheric Sounding on Envisat) mid-infrared limb emission measurements between July 2002 and March 2004 have been validated by comparison with balloon-borne (Mark IV, FIRS2, MIPAS-B), airborne (MIPAS-STR), ground-based (Spitsbergen, Thule, Kiruna, Harestua, Jungfraujoch, Izaña, Wollongong, Lauder), and spaceborne (ACE-FTS) observations. With few exceptions we found very good agreement between these instruments and MIPAS with no evidence for any bias in most cases and altitude regions. For balloon-borne measurements typical absolute mean differences are below 0.05 ppbv over the whole altitude range from 10 to 39 km. In case of ACE-FTS observations mean differences are below 0.03 ppbv for observations below 26 km. Above this altitude the comparison with ACE-FTS is affected by the photochemically induced diurnal variation of ClONO2. Correction for this by use of a chemical transport model led to an overcompensation of the photochemical effect by up to 0.1 ppbv at altitudes of 30–35 km in case of MIPAS-ACE-FTS comparisons while for the balloon-borne observations no such inconsistency has been detected. The comparison of MIPAS derived total column amounts with ground-based observations revealed no significant bias in the MIPAS data. Mean differences between MIPAS and FTIR column abundances are 0.11±0.12×1014 cm−2 (1.0±1.1%) and −0.09±0.19×1014 cm−2 (−0.8±1.7%), depending on the coincidence criterion applied. χ2 tests have been performed to assess the combined precision estimates of MIPAS and the related instruments. When no exact coincidences were available as in case of MIPAS – FTIR or MIPAS – ACE-FTS comparisons it has been necessary to take into consideration a coincidence error term to account for χ2 deviations. From the resulting χ2 profiles there is no evidence for a systematic over/underestimation of the MIPAS random error analysis.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference53 articles.
1. Bernath, P F., McElroy, C T., Abrams, M C., Boone, C D., Butler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P.-F., Colin, R., DeCola, P., DeMazière, M., Drummond, J R., Dufour, D., Evans, W F J., Fast, H., Fussen, D., Gilbert, K., Jennings, D E., Llewellyn, E J., Lowe, R P., Mahieu, E., McConnell, J C., McHugh, M., McLeod, S D., Michaud, R., Midwinter, C., Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C P., Rochon, Y J., Rowlands, N., Semeniuk, K., Simon, P., Skelton, R., Sloan, J J., Soucy, M.-A., Strong, K., Tremblay, P., Turnbull, D., Walker, K A., Walkty, I., Wardle, D A., Wehrle, V., Zander, R., and Zou, J.: Atmospheric Chemistry Experiment (ACE): Mission overview, Geophys. Res. Lett., 32, L15S01, https://doi.org/10.1029/2005GL022386, 2005. 2. Blom, C E., Fischer, H., Glatthor, N., Gulde, T., Höpfner, M., and Piesch, C.: Spatial and temporal variability of ClONO2, HNO3 and O3 in the Arctic winter of 1992/1993 as obtained by airborne infrared emission spectroscopy, J. Geophys. Res., 100, 9101–9114, 1995. 3. Boone, C D., Nassar, R., Walker, K A., Rochon, Y., McLeod, S D., Rinsland, C P., and Bernath, P F.: Retrievals for the atmospheric chemistry experiment Fourier-transform spectrometer, Appl. Opt., 44, 7218–7231, 2005. 4. Brasseur, G P. and Solomon, S.: Aeronomy of the Middle Atmosphere, 3rd revised and enlarged edition, Springer, 2005. 5. Douglass, A R., Schoeberl, M R., Stolarski, R S., Waters, J W., Russell III, J M., Roche, A E., and Massie, S T.: Interhemispheric differences in springtime production of HCl and ClONO2 in the polar vortices, J. Geophys. Res., 100, 13967–13978, 1995.
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|