Constraints on ship NO<sub>x</sub> emissions in Europe using GEOS-Chem and OMI satellite NO<sub>2</sub> observations

Author:

Vinken G. C. M.,Boersma K. F.ORCID,van Donkelaar A.,Zhang L.

Abstract

Abstract. We present a top-down ship NOx emission inventory for the Baltic Sea, the North Sea, the Bay of Biscay and the Mediterranean Sea based on satellite-observed tropospheric NO2 columns of the Ozone Monitoring Instrument (OMI) for 2005–2006. We improved the representation of ship emissions in the GEOS-Chem chemistry transport model, and compared simulated NO2 columns to consistent satellite observations. Relative differences between simulated and observed NO2 columns have been used to constrain ship emissions in four European seas (the Baltic Sea, the North Sea, the Bay of Biscay and the Mediterranean Sea) using a mass-balance approach, and accounting for non-linear sensitivities to changing emissions in both model and satellite retrieval. These constraints are applied to 39 % of total top-down European ship NOx emissions, which amount to 0.96 Tg N for 2005, and 1.0 Tg N for 2006 (11–15% lower than the bottom-up EMEP ship emission inventory). Our results indicate that EMEP emissions in the Mediterranean Sea are too high (by 60%) and misplaced by up to 150 km, which can have important consequences for local air quality simulations. In the North Sea ship track, our top-down emissions amount to 0.05 Tg N for 2005 (35% lower than EMEP). Increased top-down emissions were found for the Baltic Sea and the Bay of Biscay ship tracks, with totals in these tracks of 0.05 Tg N (131% higher than EMEP) and 0.08 Tg N for 2005 (128% higher than EMEP), respectively. Our study explicitly accounts for the (non-linear) sensitivity of satellite retrievals to changes in the a priori NO2 profiles, as satellite observations are never fully independent of model information (i.e. assumptions on vertical NO2 profiles). Our study provides for the first time a space-based, top-down ship NOx emission inventory, and can serve as a framework for future studies to constrain ship emissions using satellite NO2 observations in other seas.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3