Evaluating NOx stack plume emissions using a high-resolution atmospheric chemistry model and satellite-derived NO2 columns

Author:

Krol MaartenORCID,van Stratum Bart,Anglou Isidora,Boersma Klaas FolkertORCID

Abstract

Abstract. This paper presents large-eddy simulations with atmospheric chemistry of four large point sources world-wide, focusing on the evaluation of NOx (NO + NO2) emissions with the TROPOspheric Monitoring Instrument (TROPOMI). We implemented a condensed chemistry scheme to investigate how the emitted NOx (95 % as NO) is converted to NO2 in the plume. To use NOx as a proxy for CO2 emission, information about its atmospheric lifetime and the fraction of NOx present as NO2 is required. We find that the chemical evolution of the plumes depends strongly on the amount of NOx that is emitted, as well as on wind speed and direction. For large NOx emissions, the chemistry is pushed in a high-NOx chemical regime over a length of almost 100 km downwind of the stack location. Other plumes with lower NOx emissions show a fast transition to an intermediate-NOx chemical regime, with short NOx lifetimes. Simulated NO2 columns mostly agree within 20 % with TROPOMI, signalling that the emissions used in the model were approximately correct. However, variability in the simulations is large, making a one-to-one comparison difficult. We find that temporal wind speed variations should be accounted for in emission estimation methods. Moreover, results indicate that common assumptions about the NO2 lifetime (≈ 4 h) and NOx:NO2 ratios (≈ 1.3) in simplified methods that estimate emissions from NO2 satellite data need revision.

Funder

Horizon 2020 Framework Programme

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3