Understanding high wintertime ozone pollution events in an oil and natural gas producing region of the western US

Author:

Ahmadov R.,McKeen S.,Trainer M.,Banta R.,Brewer A.,Brown S.,Edwards P. M.ORCID,de Gouw J. A.ORCID,Frost G. J.ORCID,Gilman J.,Helmig D.,Johnson B.,Karion A.ORCID,Koss A.,Langford A.,Lerner B.ORCID,Olson J.,Oltmans S.ORCID,Peischl J.ORCID,Pétron G.,Pichugina Y.,Roberts J. M.ORCID,Ryerson T.,Schnell R.,Senff C.,Sweeney C.ORCID,Thompson C.,Veres P.ORCID,Warneke C.,Wild R.,Williams E. J.,Yuan B.ORCID,Zamora R.

Abstract

Abstract. Recent increases in oil and natural gas (NG) production throughout the western US have come with scientific and public interest in emission rates, air quality and climate impacts related to this industry. This study uses a regional scale air quality model WRF-Chem to simulate high ozone (O3) episodes during the winter of 2013 over the Uinta Basin (UB) in northeastern Utah, which is densely populated by thousands of oil and NG wells. The high resolution meteorological simulations are able to qualitatively reproduce the wintertime cold pool conditions that occurred in 2013, allowing the model to reproduce the observed multi-day buildup of atmospheric pollutants and accompanying rapid photochemical ozone formation in the UB. Two different emission scenarios for the oil and NG sector were employed in this study. The first emission scenario (bottom-up) was based on the US EPA National Emission Inventory (NEI) (2011, version 1) for the oil and NG sector for the UB. The second emission scenario (top-down) was based on the previously derived estimates of methane (CH4) emissions and a regression analysis for multiple species relative to CH4 concentration measurements in the UB. WRF-Chem simulations using the two emission data sets resulted in significant differences for concentrations of most gas-phase species. Evaluation of the model results shows greater underestimates of CH4 and other volatile organic compounds (VOCs) in the simulation with the NEI-2011 inventory than the case when the top-down emission scenario was used. Unlike VOCs, the NEI-2011 inventory significantly overestimates the emissions of nitrogen oxides (NOx), while the top-down emission scenario results in a moderate negative bias. Comparison of simulations using the two emission data sets reveals that the top-down case captures the high O3 episodes. In contrast, the simulation case using the bottom-up inventory is not able to reproduce any of the observed high O3 concentrations in the UB. A sensitivity analysis reveals that the major factors driving high wintertime O3 in the UB are shallow boundary layers with light winds, high emissions of VOCs from oil and NG operations compared to NOx emissions, enhancement of photolysis fluxes and reduction of O3 loss from deposition due to snow cover. Simple emission reduction scenarios show that the UB O3 production is VOC sensitive and NOx insensitive. The model results show a disproportionate contribution of aromatic VOCs to O3 formation relative to all other VOC emissions. We also present modeling results for winter of 2012, when high O3 levels were not observed in the UB. The air quality model together with the top-down emission framework presented here may help to address the emerging science and policy related questions surrounding the environmental impact of oil and NG drilling in western US.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3