Influence of oil and gas field operations on spatial and temporal distributions of atmospheric non-methane hydrocarbons and their effect on ozone formation in winter
Author:
Field R. A.,Soltis J.,McCarthy M. C.,Murphy S.,Montague D. C.
Abstract
Abstract. Emissions from oil and natural gas development during winter in the Upper Green River Basin of Wyoming are known to drive episodic ozone (O3) production. Contrasting O3 distributions were observed in the winters of 2011 and 2012, with numerous episodes in 2011 compared to none in 2012. During 2011 wintertime O3 episodes at two sites near Boulder Wyoming, situated ∼5 km apart, were observed to sometimes differ. In 2012 the lack of O3 episodes coincided with a reduction in ambient levels of total non-methane hydrocarbons (NMHC). Measurements of speciated NMHC, and other air quality parameters, were performed to better understand emission sources and to determine which compounds are most active in promoting O3 formation. Positive Matrix Factorization (PMF) analyses of the data were carried out to help achieve these goals. PMF analyses revealed three contributing factors that were identified with different emission source types: factor 1, combustion/traffic; factor 2, fugitive natural gas; and factor 3, fugitive condensate. Compositional signatures of three contributing factors were identified through comparison with independently derived emission source profiles. Fugitive emissions of natural gas and of condensate were the two principal emission source types for NMHC. A water treatment and recycling facility was found to be a significant source of condensate range NMHC, in particular toluene and m+p-xylene. Emissions from water treatment have an influence upon peak O3 mixing ratios at downwind measurement sites.
Publisher
Copernicus GmbH
Reference63 articles.
1. Adgate, J. L., Goldstein, B. D., and McKenzie, L. M.: Potential public health hazards, exposures and health effects from unconventional natural gas development, Environ. Sci. Technol., 48, 8307–8320, https://doi.org/10.1021/es404621d, 2014. 2. Ahmadov, R., McKeen, S., Trainer, M., Banta, R., Brewer, A., Brown, S., Edwards, P. M., de Gouw, J. A., Frost, G. J., Gilman, J., Helmig, D., Johnson, B., Karion, A., Koss, A., Langford, A., Lerner, B., Olson, J., Oltmans, S., Peischl, J., Pétron, G., Pichugina, Y., Roberts, J. M., Ryerson, T., Schnell, R., Senff, C., Sweeney, C., Thompson, C., Veres, P., Warneke, C., Wild, R., Williams, E. J., Yuan, B., and Zamora, R.: Understanding high wintertime ozone pollution events in an oil and natural gas producing region of the western US, Atmos. Chem. Phys. Discuss., 14, 20295–20343, https://doi.org/10.5194/acpd-14-20295-2014, 2014. 3. Allen, D. T., Torres, V. M., Thomas, J., Sullivan, D. W., Harrison, M., Hendler, A., Herndon, S. C., Kolb, C. E., Fraser, M. P., Hill, A. D., Lamb, B. K., Miskimins, J., Sawyer, R. F., and Seinfeld, J. H.: Measurements of methane emissions at natural gas production sites in the United States, P. Natl. Acad. Sci. USA, 110, 17768–17773, https://doi.org/10.1073/pnas.1304880110, 2013. 4. Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic-compounds under atmospheric conditions, Chem. Rev., 86, 69–201, 1986. 5. Atkinson, R.: Gas-phase tropospheric chemistry of organic compounds. A review, Atmos. Environ., 24, 1–41, 1990.
|
|