Diurnal cycle and multi-decadal trend of formaldehyde in the remote atmosphere near 46° N

Author:

Franco BrunoORCID,Marais Eloise A.ORCID,Bovy Benoît,Bader WhitneyORCID,Lejeune Bernard,Roland Ginette,Servais Christian,Mahieu EmmanuelORCID

Abstract

Abstract. Only very few long-term records of formaldehyde (HCHO) exist that are suitable for trend analysis. Furthermore, many uncertainties remain as to its diurnal cycle, representing a large short-term variability superimposed on seasonal and inter-annual variations that should be accounted for when comparing ground-based observations to, e.g., model results. In this study, we derive a multi-decadal time series (January 1988–June 2015) of HCHO total columns from ground-based high-resolution Fourier transform infrared (FTIR) solar spectra recorded at the high-altitude station of Jungfraujoch (Swiss Alps, 46.5° N, 8.0° E, 3580 m a. s. l. ), allowing for the characterization of the mid-latitudinal atmosphere for background conditions. First we investigate the HCHO diurnal variation, peaking around noontime and mainly driven by the intra-day insolation modulation and methane (CH4) oxidation. We also characterize quantitatively the diurnal cycles by adjusting a parametric model to the observations, which links the daytime to the HCHO columns according to the monthly intra-day regimes. It is then employed to scale all the individual FTIR measurements on a given daytime in order to remove the effect of the intra-day modulation for improving the trend determination and the comparison with HCHO columns simulated by the state-of-the-art GEOS-Chem v9-02 chemical transport model. Such a parametric model will be useful to scale the Jungfraujoch HCHO columns on satellite overpass times in the framework of future calibration/validation efforts of space-borne sensors. GEOS-Chem sensitivity tests suggest then that the seasonal and inter-annual HCHO column variations above Jungfraujoch are predominantly led by the atmospheric CH4 oxidation, with a maximum contribution of 25 % from the anthropogenic non-methane volatile organic compound precursors during wintertime. Finally, trend analysis of the so-scaled 27-year FTIR time series reveals a long-term evolution of the HCHO columns in the remote troposphere to be related to the atmospheric CH4 fluctuations and the short-term OH variability: +2.9 % year−1 between 1988 and 1995, −3.7 % year−1 over 1996–2002 and +0.8 % year−1 from 2003 onwards.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3