A Comparative Study of Ground-Gridded and Satellite-Derived Formaldehyde during Ozone Episodes in the Chinese Greater Bay Area

Author:

Zhao Yiming1ORCID,Mo Xujun1,Wang Hao123ORCID,Li Jiangyong1ORCID,Gong Daocheng12ORCID,Wang Dakang45,Li Qinqin12,Liu Yunfeng1,Liu Xiaoting16,Wang Jinnian45,Wang Boguang123

Affiliation:

1. Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China

2. Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, Guangzhou 511443, China

3. Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China

4. Institute of Aerospace Remote Sensing Innovations (ARSI), Guangzhou University, Guangzhou 510006, China

5. School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China

6. Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China

Abstract

Formaldehyde (HCHO) plays an important role in atmospheric photochemical reactions. Comparative studies between ground-based and satellite observations are necessary to assess and promote the potential use of column HCHO as a proxy for surface HCHO and volatile organic compound (VOC) oxidation. Previous studies have only validated temporal and vertical profile variations at one point, with limited studies comparing horizontal spatial variations due to sparse monitoring sites. The photochemistry-active Chinese Greater Bay Area (GBA) is a typical megacity cluster as well as a large hotspot of HCHO globally, which recorded a high incidence of ozone (O3) pollution. Here, we conducted the first comparative study of ground-gridded (HCHOgg) and satellite-derived (HCHOsd) HCHO during typical O3 episodes in the GBA. Our results revealed a good correlation between HCHOgg and HCHOsd, with a correlation coefficient higher than 0.5. Cloud coverage and ground pixel sizes were found to be the dominant factors affecting the quality of HCHOsd and contributing to the varying satellite pixel density. Daily averages of HCHOsd effectively improved the HCHOsd accuracy, except in areas with low satellite pixel density. Furthermore, a new quality control procedure was established to improve HCHOsd from Level 2 to Level 3, which demonstrated good application performance in O3 sensitivity analysis. Our findings indicate that the correlation between satellite observations and surface air quality can be optimized by spatiotemporal averaging of hourly HCHOsd, given the advent of geostationary satellites. Considering the representative range of sampling sites in this comparative study, we recommend establishing VOC monitoring stations within a 50 km radius in the GBA to further analyze and control photochemical pollution.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Science and Technology Program of Guangzhou City

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3