Investigating the frequency and interannual variability in global above-cloud aerosol characteristics with CALIOP and OMI

Author:

Alfaro-Contreras R.,Zhang J.ORCID,Campbell J. R.ORCID,Reid J. S.

Abstract

Abstract. Seven and a half years (June 2006 to November 2013) of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol and cloud layer products are compared with collocated Ozone Monitoring Instrument (OMI) aerosol index (AI) data and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products in order to investigate variability in estimates of biannual and monthly above-cloud aerosol (ACA) events globally. The active- (CALIOP) and passive-based (OMI-MODIS) techniques have their advantages and caveats for ACA detection, and thus both are used to derive a thorough and robust comparison of daytime cloudy-sky ACA distribution and climatology. For the first time, baseline above-cloud aerosol optical depth (ACAOD) and AI thresholds are derived and examined (AI  =  1.0, ACAOD  =  0.015) for each sensor. Both OMI-MODIS and CALIOP-based daytime spatial distributions of ACA events show similar patterns during both study periods (December–May) and (June–November). Divergence exists in some regions, however, such as Southeast Asia during June through November, where daytime cloudy-sky ACA frequencies of up to 10 % are found from CALIOP yet are non-existent from the OMI-based method. Conversely, annual cloudy-sky ACA frequencies of 20–30 % are reported over northern Africa from the OMI-based method yet are largely undetected by the CALIOP-based method. Using a collocated OMI-MODIS-CALIOP data set, our study suggests that the cloudy-sky ACA frequency differences between the OMI-MODIS- and CALIOP-based methods are mostly due to differences in cloud detection capability between MODIS and CALIOP as well as QA flags used. An increasing interannual variability of  ∼  0.3–0.4 % per year (since 2009) in global monthly cloudy-sky ACA daytime frequency of occurrence is found using the OMI-MODIS-based method. Yet, CALIOP-based global daytime ACA frequencies exhibit a near-zero interannual variability. Further analysis suggests that the OMI-derived interannual variability in cloudy-sky ACA frequency may be affected by OMI row anomalies in later years. A few regions are found to have increasing slopes in interannual variability in cloudy-sky ACA frequency, including the Middle East and India. Regions with slightly negative slopes of the interannual variability in cloudy-sky ACA frequencies are found over South America and China, while remaining regions in the study show nearly zero change in ACA frequencies over time. The interannual variability in ACA frequency is not, however, statistically significant on both global and regional scales, given the relatively limited sample sizes. A longer data record of ACA events is needed in order to establish significant trends of ACA frequency regionally and globally.

Funder

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3