Distinguishing cirrus cloud presence in autonomous lidar measurements

Author:

Campbell J. R.ORCID,Vaughan M. A.ORCID,Oo M.,Holz R. E.,Lewis J. R.,Welton E. J.

Abstract

Abstract. 2012 Level-2 Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite-based cloud data sets are investigated for thresholds that distinguish the presence of cirrus clouds in autonomous lidar measurements, based on temperatures, heights, optical depth and phase. A thermal threshold, proposed by Sassen and Campbell (2001) for cloud top temperature Ttop ≤ −37 °C, is evaluated versus CALIOP algorithms that identify ice-phase cloud layers using polarized backscatter measurements. Derived global mean cloud top heights (11.15 vs. 10.07 km above mean sea level; a.m.s.l.), base heights (8.76 km a.m.s.l. vs. 7.95 km a.m.s.l.), temperatures (−58.48 °C vs. −52.18 °C and −42.40 °C vs. −38.13 °C, respectively, for tops and bases) and optical depths (1.18 vs. 1.23) reflect the sensitivity to this constraint. Over 99 % of all Ttop ≤ −37 °C clouds are classified as ice by CALIOP Level-2 algorithms. Over 81 % of all ice clouds correspond with Ttop ≤ −37 °C. For instruments lacking polarized measurements, and thus practical estimates of phase, Ttop ≤ −37 °C provides sufficient justification for distinguishing cirrus, as opposed to the risks of glaciated liquid-water cloud contamination occurring in a given sample from clouds identified at relatively "warm" (Ttop > −37 °C) temperatures. Although accounting for uncertainties in temperatures collocated with lidar data (i.e., model reanalyses/sondes) may justifiably relax the threshold to include warmer cases, the ambiguity of "warm" ice clouds cannot be fully reconciled with available measurements, conspicuously including phase. Cloud top heights and optical depths are investigated, and global distributions and frequencies derived, as functions of CALIOP-retrieved phase. These data provide little additional information, compared with temperature alone, and may exacerbate classification uncertainties overall.

Funder

Goddard Space Flight Center

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3