Age and chemistry of dissolved organic carbon reveal enhanced leaching of ancient labile carbon at the permafrost thaw zone

Author:

McFarlane Karis J.ORCID,Throckmorton Heather M.,Heikoop Jeffrey M.,Newman Brent D.,Hedgpeth Alexandra L.,Repasch Marisa N.ORCID,Guilderson Thomas P.,Wilson Cathy J.ORCID

Abstract

Abstract. Climate change will alter the balance between frozen and thawed conditions in Arctic systems. Increased temperatures will make the extensive northern permafrost carbon stock vulnerable to decomposition and translocation. Production, cycling, and transport of dissolved organic carbon (DOC) are crucial processes for high-latitude ecosystem carbon loss that result in considerable export off the Arctic landscape. To identify where and under what conditions permafrost DOC is mobilized in an Arctic headwater catchment, we measured radiocarbon (14C) of DOC and assessed DOC composition with ultraviolet–visible spectroscopy (UV–Vis) of surface waters and shallow and deep subsurface porewaters from 17 drainages in the Barrow Environmental Observatory in Alaska. Samples were collected in July and September 2013 to assess changes in age and chemistry of DOC over time. DOC age was highly variable ranging from modern (19 ‰ Δ14C) to approximately 7000 BP (−583 ‰ Δ14C). DOC age increased with depth, over the summer as the active layer deepened, and with increasing drainage size. DOC quality indicators reflected a DOC source rich in high molecular-weight and aromatic compounds, characteristics consistent with vegetation-derived organic matter that had undergone little microbial processing, throughout the summer and a weak relationship with DOC age. In deep porewaters, DOC age was also correlated with several biogeochemical indicators (including dissolved methane concentration, δ13C, and the apparent fractionation factor), suggesting a coupling between carbon and redox biogeochemistry influencing methane production. In the drained thawed lake basins included in this study, DOC concentrations and contributions of vegetation-derived organic matter declined with increasing basin age. The weak relationship between DOC age and chemistry and consistency in DOC chemical indicators over the summer suggest a high lability of old DOC released by thawing permafrost.

Funder

Biological and Environmental Research

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3