Reemission of inorganic pollution from permafrost? A freshwater hydrochemistry study in the lower Kolyma basin (North‐East Siberia)

Author:

Szumińska Danuta1ORCID,Kozioł Krystyna1ORCID,Chalov Sergey R.12ORCID,Efimov Vasilii A.2ORCID,Frankowski Marcin3ORCID,Lehmann‐Konera Sara4ORCID,Polkowska Żaneta5ORCID

Affiliation:

1. Faculty of Geographical Sciences Kazimierz Wielki University Bydgoszcz Poland

2. Faculty of Geography Lomonosov Moscow State University Moscow Russia

3. Faculty of Chemistry Adam Mickiewicz University Poznań Poland

4. Faculty of Earth Science and Spatial Management Maria Curie‐Skłodowska University in Lublin Lublin Poland

5. Faculty of Chemistry Gdańsk University of Technology Gdańsk Poland

Abstract

AbstractPermafrost regions are under particular pressure from climate change resulting in widespread landscape changes, which impact also freshwater chemistry. We investigated a snapshot of hydrochemistry in various freshwater environments in the lower Kolyma river basin (North‐East Siberia, continuous permafrost zone) to explore the mobility of metals, metalloids and non‐metals resulting from permafrost thaw. Particular attention was focused on heavy metals as contaminants potentially released from the secondary source in the permafrozen Yedoma complex. Permafrost creeks represented the Mg‐Ca‐Na‐HCO3‐Cl‐SO4 ionic water type (with mineralisation in the range 600–800 mg L−1), while permafrost ice and thermokarst lake waters were the HCO3‐Ca‐Mg type. Multiple heavy metals (As, Cu, Co, Mn and Ni) showed much higher dissolved phase concentrations in permafrost creeks and ice than in Kolyma and its tributaries, and only in the permafrost samples and one Kolyma tributary we have detected dissolved Ti. In thermokarst lakes, several metal and metalloid dissolved concentrations increased with water depth (Fe, Mn, Ni and Zn – in both lakes; Al, Cu, K, Sb, Sr and Pb in either lake), reaching 1370 μg L−1 Cu, 4610 μg L−1 Mn, and 687 μg L−1 Zn in the bottom water layers. Permafrost‐related waters were also enriched in dissolved phosphorus (up to 512 μg L−1 in Yedoma‐fed creeks). The impact of permafrost thaw on river and lake water chemistry is a complex problem which needs to be considered both in the context of legacy permafrost shrinkage and the interference of the deepening active layer with newly deposited anthropogenic contaminants.

Publisher

Wiley

Subject

Soil Science,General Environmental Science,Development,Environmental Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3