Author:
Gobiet A.,Suklitsch M.,Heinrich G.
Abstract
Abstract. This study discusses the effect of empirical-statistical bias correction methods like quantile mapping (QM) on the change signals of climate simulations. We show that QM regionally alters the mean temperature climate change signal (CCS) derived from the ENSEMBLES multi-model dataset by up to 15%. Such modification is currently strongly discussed and is often regarded as deficiency of bias correction methods. However, an analytical analysis reveals that this modification corresponds to the effect of intensity-dependent model errors on the CCS. Such errors cause, if uncorrected, biases in the CCS. QM removes these intensity-dependent errors and can therefore potentially lead to an improved CCS. A similar analysis as for the multi-model mean CCS has been conducted for the variance of CCSs in the multi-model ensemble. It shows that this indicator for model uncertainty is artificially inflated by intensity-dependent model errors. Therefore, QM has also the potential to serve as an empirical constraint on model uncertainty in climate projections. However, any improvement of simulated CCSs by empirical-statistical bias correction methods can only be realized, if the model error characteristics are sufficiently time-invariant.
Funder
Seventh Framework Programme
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献