Atomic oxygen retrievals in the MLT region from SCIAMACHY nightglow limb measurements
-
Published:2015-03-04
Issue:3
Volume:8
Page:1021-1041
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Lednyts'kyy O.ORCID, von Savigny C., Eichmann K.-U., Mlynczak M. G.
Abstract
Abstract. Vertical distributions of atomic oxygen concentration ([O]) in the mesosphere and lower thermosphere (MLT) region were retrieved from sun-synchronous SCIAMACHY/Envisat (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY on board the Environmental Satellite) limb measurements of the oxygen 557.7 nm green line emission in the terrestrial nightglow. A band pass filter was applied to eliminate contributions from other emissions, the impact of measurement noise and auroral activity. Vertical volume emission rate profiles were retrieved from integrated limb-emission rate profiles under the assumption that each atmospheric layer is horizontally homogeneous and absorption and scattering can be neglected. The radiative transfer problem was solved using regularized total least squares minimization in the inversion procedure. Atomic oxygen concentration profiles were retrieved from data collected for altitudes in the range 85–105 km with approximately 4 km vertical resolution during the time period from August 2002 to April 2012 at approximately 22:00 local time. The retrieval of [O] profiles was based on the generally accepted two-step Barth transfer scheme including consideration of quenching processes and the use of different available sources of temperature and atmospheric density profiles. A sensitivity analysis was performed for the retrieved [O] profiles to estimate maximum uncertainties assuming independent contributions of uncertainty components. Errors in photochemical model parameters depending on temperature uncertainties and random errors of model parameters contribute less than 50% to the overall [O] retrieval error. The retrieved [O] profiles were compared with reference [O] profiles provided by SABER/TIMED (Sounding of the Atmosphere using Broadband Emission Radiometry instrument on board the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics satellite) or by the NRLMSISE-00 (Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar Extended model, year: 2000) and SD-WACCM4 (Whole Atmosphere Community Climate Model with Specified Dynamics, version 4). A comparison of the retrieved [O] profiles with the reference [O] profiles led to the conclusion that the photochemical model taking into account quenching of O(1S) by O2, O(3P), and N2 and the SABER/TIMED model as a source of temperature and density profiles are the most appropriate choices for our case. The retrieved [O] profile time series exhibits characteristic seasonal variations in agreement with satellite observations based on analysis of OH Meinel band emissions and atmospheric models. A pronounced 11-year solar cycle variation can also be identified in the retrieved atomic oxygen concentration time series.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference65 articles.
1. Akins, K. A., Healy, L. M., Coffey, S. L., and Picone, J. M.: Comparison of MSIS and Jacchia atmospheric density models for orbit determination and propagation, proceedings of the 13th AAS/AIAA space flight mechanics meeting, Ponce, Puerto Rico, Adv. Astronaut. Sci., 114, 951–970, 2003. 2. Blackwell, D. E., Ingham, M. F., and Rundle, H. N.: The night-sky spectrum λλ 5000–6500 A, Astrophys. J., 131, 15–24, https://doi.org/10.1086/146801, 1960. 3. Bovensmann, H., Burrows, J. P. Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: mission objectives and measurement modes, J. Atmos. Sci., 2, 127–150, https://doi.org/10.1175/1520-0469(1999)0562.0.CO;2, 1999. 4. Bramstedt, K., Noël, S., Bovensmann, H., Gottwald, M., and Burrows, J. P.: Precise pointing knowledge for SCIAMACHY solar occultation measurements, Atmos. Meas. Tech., 5, 2867–2880, https://doi.org/10.5194/amt-5-2867-2012, 2012. 5. Burrows, J. P., Hölzle, E., Goede, A. P. H., Visser, H., and Fricke, W.: SCIAMACHY – scanning imaging absorption spectrometer for atmospheric chartography, Acta Astronaut., 35, 445–451, https://doi.org/10.1016/0094-5765(94)00278-T, 1995.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|