Long-range aerosol transport and impacts on size-resolved aerosol composition in Metro Manila, Philippines

Author:

Braun Rachel A.ORCID,Aghdam Mojtaba Azadi,Bañaga Paola AngelaORCID,Betito GraceORCID,Cambaliza Maria Obiminda,Cruz Melliza Templonuevo,Lorenzo Genevieve Rose,MacDonald Alexander B.,Simpas James BernardORCID,Stahl ConnorORCID,Sorooshian ArminORCID

Abstract

Abstract. This study analyzes long-range transport of aerosol and aerosol chemical characteristics based on instances of high- and low-aerosol-loading events determined via ground-based size-resolved aerosol measurements collected at the Manila Observatory in Metro Manila, Philippines, from July to October 2018. Multiple data sources, including models, remote sensing, and in situ measurements, are used to analyze the impacts of long-range aerosol transport on Metro Manila and the conditions at the local and synoptic scales facilitating this transport. Through the use of case studies, evidence of long-range transport of biomass burning aerosol and continental emissions is identified in Metro Manila. Long-range transport of biomass burning aerosol from the Maritime Continent, bolstered by southwesterly flow and permitted by low rainfall, was identified through model results and the presence of biomass burning tracers (e.g., K, Rb) in the ground-based measurements. The impacts of emissions transported from continental East Asia on the aerosol characteristics in Metro Manila are also identified; for one of the events analyzed, this transport was facilitated by the nearby passage of a typhoon. Changes in the aerosol size distributions, water-soluble chemical composition, and contributions of various organic aerosol species to the total water-soluble organic aerosol were examined for the different cases. The events impacted by biomass burning transport had the overall highest concentration of water-soluble organic acids, while the events impacted by long-range transport from continental East Asia showed high percent contributions from shorter-chain dicarboxylic acids (i.e., oxalate) that are often representative of photochemical and aqueous processing in the atmosphere. The low-aerosol-loading event was subject to a larger precipitation accumulation than the high-aerosol events, indicative of wet scavenging as an aerosol sink in the study region. This low-aerosol event was characterized by a larger relative contribution from supermicrometer aerosols and had a higher percent contribution from longer-chain dicarboxylic acids (i.e., maleate) to the water-soluble organic aerosol fraction, indicating the importance of both primary aerosol emissions and local emissions.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference138 articles.

1. Aggarwal, S. G. and Kawamura, K.: Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: Implications for photochemical aging during long-range atmospheric transport, J. Geophys. Res.-Atmos., 113, D14301, https://doi.org/10.1029/2007jd009365, 2008.

2. Agrawal, H., Malloy, Q. G. J., Welch, W. A., Wayne Miller, J., and Cocker, D. R.: In-use gaseous and particulate matter emissions from a modern ocean going container vessel, Atmos. Environ., 42, 5504–5510, https://doi.org/10.1016/j.atmosenv.2008.02.053, 2008.

3. Akagi, S. K., Craven, J. S., Taylor, J. W., McMeeking, G. R., Yokelson, R. J., Burling, I. R., Urbanski, S. P., Wold, C. E., Seinfeld, J. H., Coe, H., Alvarado, M. J., and Weise, D. R.: Evolution of trace gases and particles emitted by a chaparral fire in California, Atmos. Chem. Phys., 12, 1397–1421, https://doi.org/10.5194/acp-12-1397-2012, 2012.

4. Alas, H. D., Müller, T., Birmili, W., Kecorius, S., Cambaliza, M. O., Simpas, J. B. B., Cayetano, M., Weinhold, K., Vallar, E., Galvez, M. C., and Wiedensohler, A.: Spatial Characterization of Black Carbon Mass Concentration in the Atmosphere of a Southeast Asian Megacity: An Air Quality Case Study for Metro Manila, Philippines, Aerosol Air Qual. Res., 18, 2301–2317, https://doi.org/10.4209/aaqr.2017.08.0281, 2018.

5. Allen, A. G., Nemitz, E., Shi, J. P., Harrison, R. M., and Greenwood, J. C.: Size distributions of trace metals in atmospheric aerosols in the United Kingdom, Atmos. Environ., 35, 4581–4591, https://doi.org/10.1016/S1352-2310(01)00190-X, 2001.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3