A comparison study between CMAQ-simulated and OMI-retrieved NO<sub>2</sub> columns over East Asia for evaluation of NO<sub>x</sub> emission fluxes of INTEX-B, CAPSS, and REAS inventories

Author:

Han K. M.ORCID,Lee S.ORCID,Chang L. S.,Song C. H.

Abstract

Abstract. Comparison between the CMAQ (Community Multi-scale Air Quality Model)-calculated and OMI (Ozone Monitoring Instrument)-retrieved tropospheric NO2 columns was carried out for 2006 over East Asia (100–150° E; 20–50° N) to evaluate the bottom-up NOx emission fluxes of INTEX-B, CAPSS, and REAS v1.11 inventories. The three emission inventories were applied to the CMAQ model simulations for the countries of China, South Korea, and Japan, respectively. For the direct comparison between the two NO2 columns, the averaging kernels (AKs) obtained from the Royal Netherlands Meteorological Institute (KNMI)/DOMINO v2.0 daily product were applied to the CMAQ-simulated data. The analysis showed that the two tropospheric NO2 columns from the CMAQ model simulations and OMI observations (ΩCMAQ,AK and ΩOMI) had good spatial and seasonal correlation, with correlation coefficients ranging from 0.71 to 0.96. In addition, the normalized mean errors (NMEs) between the ΩCMAQ,AK and ΩOMI were found to range from ~ 40 to ~ 63%. The ΩCMAQ,AK were, on annual average, ~ 28% smaller (in terms of the NMEs) than the ΩOMI, indicating that the NOx emissions used were possibly underestimated in East Asia. Large absolute differences between the ΩCMAQ,AK and ΩOMI were found, particularly over central eastern China (CEC) during winter (annual averaged mean error of ~ 4.51 × 1015 molecules cm−2). Although such differences between the ΩCMAQ,AK and ΩOMI are likely caused by the errors and biases in the NOx emissions used in the CMAQ model simulations, it can be rather difficult to quantitatively relate the differences to the accuracy of the NOx emissions, because there are also several uncertain factors in the CMAQ model, satellite-retrieved NO2 columns and AK products, and NOx and other trace gas emissions. In this context, three uncertain factors were selected and analyzed with sensitivity runs (monthly variations in NOx emissions; influences of different NOx emission fluxes; and reaction probability of N2O5 radicals). Other uncertain or possible influential factors were also discussed to suggest future direction of the study.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3