Evaluation of the emission inventory for large point emission sources in South Korea by applying measured data from the NASA/NIER KORUS-AQ aircraft field campaign

Author:

Park Minwoo1,Hu Hyejung2,Kim Younha3,Fried Alan4,Simpson Isobel J.5,Jin Hyungah6,Weinheimer Andrew7,Huey Greg8,Crawford James9,Woo Jung-Hun210

Affiliation:

1. 1Department of Advanced Technology Fusion, Konkuk University, Seoul, Korea

2. 2Department of Technology Fusion Engineering, Konkuk University, Seoul, Korea

3. 3International Institute for Applied Systems Analysis, Laxenburg, Austria

4. 4INSTAAR, University of Colorado, Boulder, CO, USA

5. 5University of California, Irvine, Irvine, CA, USA

6. 6NIER, National Institute of Environmental Research, Seoul, Korea

7. 7National Center for Atmospheric Research, Boulder, CO, USA

8. 8Georgia Institute of Technology, Atlanta, GA, USA

9. 9NASA Langley Research Center, Hampton, VA, USA

10. 10Department of Civil and Environmental Engineering, Konkuk University, Seoul, Korea

Abstract

One of the major issues in determining a region’s air quality is the uncertainty of large point sources (LPSs) emissions, which significantly affect the local-regional air quality. In this study, the SO2 and NOx emissions of 5 major LPSs in South Korea were evaluated by comparing the emissions-based concentrations employing a Gaussian dispersion model with aircraft-based measurements from DC-8 “around-the-stack” flights through the National Aeronautics and Space Administration (NASA)/National Institute of Environmental Research (NIER) KORea-U.S. Cooperative Domestic Air Quality (KORUS-AQ) aircraft field campaign. The ratio between modeled and measured concentrations for all 5 LPSs ranged between 0.42 and 1.30 and 0.39 and 1.01 for NOx and SO2, respectively. The results for the Boryeong, Dangjin, and Seocheon power plants (PPs), where the locations and sizes of stacks are easier to specify than industrial complexes (Hyundai Steel and Hankook Glass), yielded better performance, which ranged between 0.82 and 1.30 and 0.79 and 1.01 for NOx and SO2. This level of agreement was very encouraging, considering that the modeled concentrations were based on 30-min averaged emissions compared to less-than-a-minute DC-8 around-the-stack measurements. Based on our analysis, the uncertainty of LPS emissions, at least for NOx and SO2, appears to be small, which implies that the point sources inventory emissions are reasonably accurate. The Dangjin PP’s analysis reveals that the actual measured emissions should be considered in addition to “the official” inventory amounts to reduce emission uncertainty. This detailed comparative analysis verified the method used for this study. The findings of this study are expected to enhance the performance of future LPS emission inventory assessments. In terms of recommendations, the data from the raw emission inventory should include more clear information about the locations of measured stacks to obtain more accurate emission estimates. In addition, the flight measurement duration should be long enough to fly around several times to reduce uncertainties, and the flight positions and altitudes should be varied. By improving LPS inventories through accurate evaluations, more accurate air quality forecasts and better policies could be made. As a result, it is expected that public health can be improved by reducing the time people are exposed to high concentrations of air pollutants.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3