Variations of surface ozone at Ieodo Ocean Research Station in the East China Sea and the influence of Asian outflows
-
Published:2015-11-12
Issue:21
Volume:15
Page:12611-12621
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Han J.ORCID, Shin B., Lee M., Hwang G., Kim J., Shim J., Lee G., Shim C.
Abstract
Abstract. Ieodo Ocean Research Station (IORS), a research tower (~ 40 m a.s.l.) for atmospheric and oceanographic observations, is located in the East China Sea (32.07° N, 125.10° E). The IORS is almost equidistant from South Korea, China, and Japan and, therefore, it is an ideal place to observe Asian outflows without local emission effects. The seasonal variation of ozone was distinct, with a minimum in August (37 ppbv) and two peaks in April and October (62 ppbv), and was largely affected by the seasonal wind pattern over east Asia. At IORS, six types of air masses were distinguished with different levels of O3 concentrations by the cluster analysis of backward trajectories. Marine air masses from the Pacific Ocean represent a relatively clean background air with a lowest ozone level of 32 ppbv, which was most frequently observed in summer (July–August). In spring (March–April) and winter (December–February), the influence of Chinese outflows was dominant with higher ozone concentrations of 62 and 49 ppbv, respectively. This study confirms that the influence of Chinese outflows was the main factor determining O3 levels at IORS and its extent was dependent on meteorological state, particularly at a long-term scale.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference61 articles.
1. Akimoto, H., Mukai, H., Nishikawa, M., Murano, K., Hatakeyama, S., Liu, C.-M., Buhr, M., Hsu, K. J., Jaffe, D. A., Zhang, L., Honrath, R., Merrill, J. T., and Newell, R. E.: Long-range transport of ozone in the East Asian Pacific rim region, J. Geophys. Res.-Atmos., 101, 1999–2010, https://doi.org/10.1029/95JD00025, 1996. 2. Ayers, G. P., Penkett, S. A., Gillett, R. W., Bandy, B., Galbally, I. E., Meyer, C. P., Elsworth, C. M., Bentley, S. T., and Forgan, B. W.: The annual cycle of peroxides and ozone in marine air at Cape Grim, Tasmania, J. Atmos. Chem., 23, 221–252, https://doi.org/10.1007/BF00055155, 1996. 3. Bell, J. N. B., Power, S. A., Jarraud, N., Agrawal, M., and Davies, C.: The effects of air pollution on urban ecosystems and agriculture, Int. J. Sustain. Dev. World, 18, 226–235, https://doi.org/10.1080/13504509.2011.570803, 2011. 4. Bell, M. L. and Dominici, F.: Effect modification by community characteristics on the short-term effects of ozone exposure and mortality in 98 US communities, Am. J. Epidemiol., 167, 986–997, https://doi.org/10.1093/aje/kwm396, 2008. 5. Berchet, A., Paris, J. D., Ancellet, G., Law, K. S., Stohl, A., Nédélec, P., Arshinov, M. Y., Belan, B. D., and Ciais, P.: Tropospheric ozone over Siberia in spring 2010: Remote influences and stratospheric intrusion, Tellus B, 65, 19688, https://doi.org/10.3402/tellusb.v65i0.19688, 2013.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|