Vertical distribution of particle-phase dicarboxylic acids, oxoacids and <i>α</i>-dicarbonyls in the urban boundary layer based on the 325 m tower in Beijing
-
Published:2020-09-07
Issue:17
Volume:20
Page:10331-10350
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Zhao Wanyu, Ren Hong, Kawamura KimitakaORCID, Du Huiyun, Chen Xueshun, Yue SiyaoORCID, Xie Qiaorong, Wei LianfangORCID, Li Ping, Zeng Xin, Kong Shaofei, Sun YeleORCID, Wang Zifa, Fu PingqingORCID
Abstract
Abstract. Vertical distributions of dicarboxylic acids, oxoacids, α-dicarbonyls and other organic tracer compounds in fine aerosols
(PM2.5) were investigated at three heights (8, 120 and
260 m) based on a 325 m meteorological tower in urban
Beijing in the summer of 2015. Results showed that the concentrations
of oxalic acid (C2), the predominant diacid, were more
abundant at 120 m (210±154 ng m−3) and
260 m (220±140 ng m−3) than those at the
ground surface (160±90 ng m−3). Concentrations of
phthalic acid (Ph) decreased with the increase in height, indicating
that local vehicular exhausts were the main contributor. Positive
correlations were noteworthy for C2 ∕ total diacids with mass
ratios of C2 to main oxoacids (Pyr and ωC2) and α-dicarbonyls (Gly and MeGly) in polluted
days (0.42≤r2≤0.65), especially at the ground
level. In clean days, the ratios of carbon content in oxalic acid to
water-soluble organic carbon (C2−C ∕ WSOC) showed larger
values at 120 and 260 m than those at the ground
surface. However, in polluted days, the C2−C ∕ WSOC ratio
mainly reached its maximum at ground level. These phenomena may
indicate the enhanced contribution of aqueous-phase oxidation to
oxalic acid in polluted days. Combined with the influence of wind
field, total diacids, oxoacids and α-dicarbonyls decreased by
22 %–58 % under the control on anthropogenic activities during
the 2015 Victory Parade period. Furthermore, the positive matrix
factorisation (PMF) results showed
that the secondary formation routes (secondary sulfate formation and
secondary nitrate formation) were the dominant contributors
(37 %–44 %) to organic acids, followed by biomass burning
(25 %–30 %) and motor vehicles (18 %–24 %). In this
study, the organic acids at ground level were largely associated
with local traffic emissions, while the long-range atmospheric
transport followed by photochemical ageing contributed more to diacids
and related compounds in the urban boundary layer than the ground
surface in Beijing.
Funder
National Natural Science Foundation of China
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference117 articles.
1. Andreae, M. and Rosenfeld, D.: Aerosol–cloud–precipitation interactions.
Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev.,
89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008. 2. Andreae, M. O., Artaxo, P., Beck, V., Bela, M., Freitas, S., Gerbig, C., Longo, K., Munger, J. W., Wiedemann, K. T., and Wofsy, S. C.: Carbon monoxide and related trace gases and aerosols over the Amazon Basin during the wet and dry seasons, Atmos. Chem. Phys., 12, 6041–6065, https://doi.org/10.5194/acp-12-6041-2012, 2012. 3. Andreae, M. O., Acevedo, O. C., Araùjo, A., Artaxo, P., Barbosa, C. G. G., Barbosa, H. M. J., Brito, J., Carbone, S., Chi, X., Cintra, B. B. L., da Silva, N. F., Dias, N. L., Dias-Júnior, C. Q., Ditas, F., Ditz, R., Godoi, A. F. L., Godoi, R. H. M., Heimann, M., Hoffmann, T., Kesselmeier, J., Könemann, T., Krüger, M. L., Lavric, J. V., Manzi, A. O., Lopes, A. P., Martins, D. L., Mikhailov, E. F., Moran-Zuloaga, D., Nelson, B. W., Nölscher, A. C., Santos Nogueira, D., Piedade, M. T. F., Pöhlker, C., Pöschl, U., Quesada, C. A., Rizzo, L. V., Ro, C.-U., Ruckteschler, N., Sá, L. D. A., de Oliveira Sá, M., Sales, C. B., dos Santos, R. M. N., Saturno, J., Schöngart, J., Sörgel, M., de Souza, C. M., de Souza, R. A. F., Su, H., Targhetta, N., Tóta, J., Trebs, I., Trumbore, S., van Eijck, A., Walter, D., Wang, Z., Weber, B., Williams, J., Winderlich, J., Wittmann, F., Wolff, S., and Yáñez-Serrano, A. M.: The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols, Atmos. Chem. Phys., 15, 10723–10776, https://doi.org/10.5194/acp-15-10723-2015, 2015. 4. Ballentine, D. C., Macko, S. A., and Turekian, V. C.: Variability of stable
carbon isotopic compositions in individual fatty acids from combustion of
C4 and C3 plants: implications for biomass burning, Chem. Geol.,
152, 151–161, https://doi.org/10.1016/S0009-2541(98)00103-X, 1998. 5. Bilde, M., Barsanti, K., Booth, M., Cappa, C. D., Donahue, N. M.,
Emanuelsson, E. U., McFiggans, G., Krieger, U. K., Marcolli, C., Topping, D., Ziemann, P., Barley, M., Clegg, S., Dennis-Smither, B., Hallquist, M.,
Hallquist, Å. M., Khlystov, A., Kulmala, M., Mogensen, D., Percival, C. J., Pope, F., Reid, J. P., Ribeiro da Silva, M. A. V., Rosenoern, T., Salo, K., Soonsin, V. P., Yli-Juuti, T., Prisle, N. L., Pagels, J., Rarey, J.,
Zardini, A. A., and Riipinen, I.: Saturation vapor pressures and transition
enthalpies of low-volatility organic molecules of atmospheric relevance:
From dicarboxylic acids to complex mixtures, Chem. Rev., 115, 4115–4156,
https://doi.org/10.1021/cr5005502, 2015.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|