Retrieving the availability of light in the ocean utilising spectral signatures of vibrational Raman scattering in hyper-spectral satellite measurements

Author:

Dinter T.,Rozanov V. V.,Burrows J. P.ORCID,Bracher A.ORCID

Abstract

Abstract. The availability of light in the ocean is an important parameter for the determination of phytoplankton photosynthesis processes and primary production from satellite data. It is also a useful parameter for other applications, e.g. the determination of heat fluxes. In this study, a method was developed utilising the vibrational Raman scattering (VRS) effect of water molecules to determine the number of photons available in the ocean water, which is expressed by the depth integrated scalar irradiance E0. Radiative transfer simulations with the SCIATRAN fully coupled ocean–atmosphere radiative transfer model (RTM) show clearly the relationship of E0 with the strength of the VRS signal measured at the top of the atmosphere (TOA). Taking advantage of VRS structures in hyper-spectral satellite measurements, a retrieval technique to derive E0 in the wavelength region from 390 to 444.5 nm was developed. This approach uses the weighting function differential optical absorption spectroscopy (WF-DOAS) technique, applied to TOA radiances, measured by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). Based on the approach of Vountas et al. (2007), where the DOAS method was used to fit modelled spectra of VRS, the method was improved by using the weighting function of VRS (VRS-WF) in the DOAS fit. This was combined with a look-up table (LUT) technique, where the E0 value was obtained for each VRS satellite fit directly. The VRS-WF and the LUT were derived from calculations with the SCIATRAN RTM (Rozanov et al., 2014). RTM simulations for different chlorophyll a concentrations and illumination conditions clearly show that low fit factors of VRS retrieval results correspond to low amounts of light in the water column and vice versa. Exemplarily, 1 month of SCIAMACHY data were processed and a global map of the depth integrated scalar irradiance E0 was retrieved. Spectral structures of VRS were clearly identified in the radiance measurements of SCIAMACHY. The fitting approach led to consistent results and the WF-DOAS algorithm results of VRS correlated clearly with the chlorophyll concentration in case-I water. Comparisons of the diffuse attenuation coefficient, extracted by VRS fit results, with the established GlobColour Kd(490) product show consistent results.

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3