Heterogeneous oxidation of amorphous organic aerosol surrogates by O<sub>3</sub>, NO<sub>3</sub>, and OH at typical tropospheric temperatures
-
Published:2020-05-25
Issue:10
Volume:20
Page:6055-6080
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Li JienanORCID, Forrester Seanna M., Knopf Daniel A.ORCID
Abstract
Abstract. Typical tropospheric temperatures render possible phase
states of amorphous organic aerosol (OA) particles of solid, semisolid, and
liquid. This will affect the multiphase oxidation kinetics involving the
organic condensed-phase and gaseous oxidants and radicals. To quantify this
effect, we determined the reactive uptake coefficients (γ) of
O3, NO3, and OH by substrate films composed of single and binary OA
surrogate species under dry conditions for temperatures from 213 to 313 K. A
temperature-controlled coated-wall flow reactor coupled to a chemical
ionization mass spectrometer was applied to determine γ with
consideration of gas diffusion transport limitation and gas flow entrance
effects, which can impact heterogeneous reaction kinetics. The phase state
of the organic substrates was probed via the poke-flow technique, allowing
the estimation of the substrates' glass transition temperatures. γ
values for O3 and OH uptake to a canola oil substrate, NO3 uptake
to a levoglucosan and a levoglucosan / xylitol substrate, and OH uptake to a
glucose and glucose / 1,2,6-hexanetriol substrate have been determined as a
function of temperature. We observed the greatest changes in γ with
temperature for substrates that experienced the largest changes in viscosity
as a result of a solid-to-liquid phase transition. Organic substrates that
maintain a semisolid or solid phase state and as such a relatively higher
viscosity do not display large variations in heterogeneous reactivity. From
213 to 293 K, γ values of O3 with canola oil, of NO3
with a levoglucosan / xylitol mixture, and of OH with a
glucose / 1,2,6-hexanetriol mixture and canola oil, increase by about a factor
of 34, 3, 2, and 5, respectively, due to a solid-to-liquid phase transition
of the substrate. These results demonstrate that the surface and bulk
lifetime of the OA surrogate species can significantly increase due to the
slowed heterogeneous kinetics when OA species are solid or highly viscous in
the middle and upper troposphere. This experimental study will further our
understanding of the chemical evolution of OA particles with subsequent
important consequences for source apportionment, air quality, and climate.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference176 articles.
1. Abbatt, J. P. D., Leaitch, W. R., Aliabadi, A. A., Bertram, A. K., Blanchet, J.-P., Boivin-Rioux, A., Bozem, H., Burkart, J., Chang, R. Y. W., Charette, J., Chaubey, J. P., Christensen, R. J., Cirisan, A., Collins, D. B., Croft, B., Dionne, J., Evans, G. J., Fletcher, C. G., Galí, M., Ghahremaninezhad, R., Girard, E., Gong, W., Gosselin, M., Gourdal, M., Hanna, S. J., Hayashida, H., Herber, A. B., Hesaraki, S., Hoor, P., Huang, L., Hussherr, R., Irish, V. E., Keita, S. A., Kodros, J. K., Köllner, F., Kolonjari, F., Kunkel, D., Ladino, L. A., Law, K., Levasseur, M., Libois, Q., Liggio, J., Lizotte, M., Macdonald, K. M., Mahmood, R., Martin, R. V., Mason, R. H., Miller, L. A., Moravek, A., Mortenson, E., Mungall, E. L., Murphy, J. G., Namazi, M., Norman, A.-L., O'Neill, N. T., Pierce, J. R., Russell, L. M., Schneider, J., Schulz, H., Sharma, S., Si, M., Staebler, R. M., Steiner, N. S., Thomas, J. L., von Salzen, K., Wentzell, J. J. B., Willis, M. D., Wentworth, G. R., Xu, J.-W., and Yakobi-Hancock, J. D.: Overview paper: New insights into aerosol and climate in the Arctic, Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, 2019. 2. Abramson, E., Imre, D., Beranek, J., Wilson, J., and Zelenyuk, A.:
Experimental determination of chemical diffusion within secondary organic
aerosol particles, Phys. Chem. Chem. Phys., 15, 2983–2991,
https://doi.org/10.1039/c2cp44013j, 2013. 3. Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P.,
Longo, K. M., and Silva-Dias, M. A.: Smoking rain clouds over the Amazon,
Science, 303, 1337–1342, https://doi.org/10.1126/science.1092779, 2004. 4. Angell, C. A.: Relaxation in liquids, polymers and plastic crystals – strong
fragile patterns and problems, J. Non-Cryst. Solids, 131, 13–31,
https://doi.org/10.1016/0022-3093(91)90266-9, 1991. 5. Angell, C. A.: Formation of glasses from liquids and biopolymers, Science,
267, 1924–1935, https://doi.org/10.1126/science.267.5206.1924, 1995.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|