Existence of Crystalline Ammonium Sulfate Nuclei Affects Chemical Reactivity of Oleic Acid Particles Through Heterogeneous Nucleation

Author:

Liu Wenli1,Liao Keren2,Chen Qi2ORCID,He Longkun3ORCID,Liu Yingjun3,Kuwata Mikinori1ORCID

Affiliation:

1. Laboratory for Climate and Ocean‐Atmosphere Studies Department of Atmospheric and Oceanic Sciences School of Physics Peking University Beijing China

2. State Key Joint Laboratory of Environmental Simulation and Pollution Control BIC‐ESAT and IJRC College of Environmental Sciences and Engineering Peking University Beijing China

3. State Key Joint Laboratory of Environmental Simulation and Pollution Control College of Environmental Sciences and Engineering Peking University Beijing China

Abstract

AbstractOrganic aerosol particles are oxidized by atmospheric oxidants. These particles are occasionally internally mixed with solid materials such as soot and inorganic crystals. However, potential impacts of the particles' mixing states on chemical reactivity have rarely been investigated. This study investigated the influence of the existence of crystalline ammonium sulfate on chemical reactivity of oleic acid particles with ozone for the temperature range of −20°C to +35°C using an aerosol flow tube reactor. The chemical compositions of the resulting particles were monitored using online instruments for deriving the reactive uptake coefficients (γ) of ozone by oleic acid. The values of γ were not significantly influenced by the existence of ammonium sulfate when the temperature of the reactor was higher than the melting point of oleic acid (∼13°C). The values of γ were unmeasurably small for the lower temperature range when oleic acid particles were internally mixed with crystalline ammonium sulfate. No significant change in γ was observed for the temperature range down to −13°C when the inorganic salt was absent, likely due to the formation of supercooled liquid. The difference in chemical reactivity can be explained by the occurrence of heterogeneous nucleation induced by inorganic seed.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3