3D GEOLOGICAL OUTCROP CHARACTERIZATION: AUTOMATIC DETECTION OF 3D PLANES (AZIMUTH AND DIP) USING LiDAR POINT CLOUDS

Author:

Anders K.,Hämmerle M.,Miernik G.,Drews T.,Escalona A.,Townsend C.,Höfle B.

Abstract

Terrestrial laser scanning constitutes a powerful method in spatial information data acquisition and allows for geological outcrops to be captured with high resolution and accuracy. A crucial aspect for numerous geologic applications is the extraction of rock surface orientations from the data. This paper focuses on the detection of planes in rock surface data by applying a segmentation algorithm directly to a 3D point cloud. Its performance is assessed considering (1) reduced spatial resolution of data and (2) smoothing in the course of data pre-processing. The methodology is tested on simulations of progressively reduced spatial resolution defined by varying point cloud density. Smoothing of the point cloud data is implemented by modifying the neighborhood criteria during normals estima-tion. The considerable alteration of resulting planes emphasizes the influence of smoothing on the plane detection prior to the actual segmentation. Therefore, the parameter needs to be set in accordance with individual purposes and respective scales of studies. Fur-thermore, it is concluded that the quality of segmentation results does not decline even when the data volume is significantly reduced down to 10%. The azimuth and dip values of individual segments are determined for planes fit to the points belonging to one segment. Based on these results, azimuth and dip as well as strike character of the surface planes in the outcrop are assessed. Thereby, this paper contributes to a fully automatic and straightforward workflow for a comprehensive geometric description of outcrops in 3D.

Publisher

Copernicus GmbH

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3