3D BUILDING RECONSTRUCTION FROM LIDAR POINT CLOUDS BY ADAPTIVE DUAL CONTOURING

Author:

Orthuber E.,Avbelj J.

Abstract

Abstract. This paper presents a novel workflow for data-driven building reconstruction from Light Detection and Ranging (LiDAR) point clouds. The method comprises building extraction, a detailed roof segmentation using region growing with adaptive thresholds, segment boundary creation, and a structural 3D building reconstruction approach using adaptive 2.5D Dual Contouring. First, a 2D-grid is overlain on the segmented point cloud. Second, in each grid cell 3D vertices of the building model are estimated from the corresponding LiDAR points. Then, the number of 3D vertices is reduced in a quad-tree collapsing procedure, and the remaining vertices are connected according to their adjacency in the grid. Roof segments are represented by a Triangular Irregular Network (TIN) and are connected to each other by common vertices or - at height discrepancies - by vertical walls. Resulting 3D building models show a very high accuracy and level of detail, including roof superstructures such as dormers. The workflow is tested and evaluated for two data sets, using the evaluation method and test data of the “ISPRS Test Project on Urban Classification and 3D Building Reconstruction” (Rottensteiner et al., 2012). Results show that the proposed method is comparable with the state of the art approaches, and outperforms them regarding undersegmentation and completeness of the scene reconstruction.

Publisher

Copernicus GmbH

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DERIVATION OF BUILDING STRUCTURES FROM NOISY DIGITAL SURFACE MODELS;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-12-13

2. Evaluation of an OpenCV Implementation of Structure from Motion on Open Source Data;Towards Autonomous Robotic Systems;2021

3. City object detection from airborne Lidar data with OpenStreetMap‐tagged superpixels;Concurrency and Computation: Practice and Experience;2020-09-21

4. Aerial LiDAR Data Augmentation for Direct Point-Cloud Visualisation;Sensors;2020-04-08

5. Urban environment 3D studies by automated feature extraction from LiDAR point clouds;Visnyk of V.N. Karazin Kharkiv National University, series Geology. Geography. Ecology;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3