Urban environment 3D studies by automated feature extraction from LiDAR point clouds

Author:

Abstract

Research problem introduction. Both a number of necessities that require the novel technological introductions in urban studies and the challengers corresponding to these introductions have been outlined with the emphasis on the urban remote sensing tools. The research goal of this text is to outline the authors’ original contribution to the algorithmic content of the automated feature extraction upon the urban environment modeling, as well as to represent the original web-software for urban studies. AFE methods in the building detection, extraction and 3D reconstruction within the LiDAR pipeline: a thematic overview. The overall AFE algorithmic approach has been summarized proceeding from an extensional literature review due to the feature extraction from raw lidar data. A sample of the composite model of an urban feature extracted, the overall AFE algorithmic flowchart, and few MSL processed results have been visualized. Feature detection, classification, segmentation and reconstruction have been presented as constituents of the united LiDAR pipeline. EOS LiDAR Tool (ELiT) and our key original algorithmic approaches to the AFE issues. The web-software has been developed on the base of the outlined multifunctional research approach. This software has several basic functionalities within the distributed information system: building extraction, building extraction in rural areas, change detection, and digital elevation model generation. Two basic algorithmic approaches implemented in the software have been explained in details: High Polyhedral Modeling provided by the Building Extraction tool, and Low Polyhedral Modeling provided by the Building Extraction Rural Area tool. The extensive usage of the Voronoi diagram for cluster adjacency on the finalizing modeling stage has been provided as our original update of the existing LPM methodology: its applying for the roof cluster adjacency determination and for separation of coplanar clusters, applying limited diagram for avoiding side effects of adjacency determination, its applying for the awning / overhand identification. ELiT Geoportal. The EGP has been depicted as a type of web portal used to find, access, and process LiDAR geospatial both primary, and derivative information, as well as to provide the associated geographic services (display, editing, analysis, etc.) via the Internet. The key characteristics of our Geoportal have been listed as well as some illustrations provided for the uploaded projects. Conclusion and future works. The automated feature extraction from lidar data technique has been presented with the authors’ updates as a highly promising solution for the multicomponent simulation of urban environment, that can be used for different applications for cities. The use-cases for the EGP have been outlined as hot issues: Population estimation with building geometries; Energy demand for heating and cooling; Visibility analysis in urban environment.

Publisher

V. N. Karazin Kharkiv National University

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3