Importance of basal processes in simulations of a surging Svalbard outlet glacier
-
Published:2014-08-04
Issue:4
Volume:8
Page:1393-1405
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Gladstone R.ORCID, Schäfer M., Zwinger T.ORCID, Gong Y.ORCID, Strozzi T.ORCID, Mottram R., Boberg F., Moore J. C.
Abstract
Abstract. The outlet glacier of Basin 3 (B3) of Austfonna ice cap, Svalbard, is one of the fastest outlet glaciers in Svalbard, and shows dramatic changes since 1995. In addition to previously observed seasonal summer speed-up associated with the melt season, the winter speed of B3 has accelerated approximately fivefold since 1995. We use the Elmer/Ice full-Stokes model for ice dynamics to infer spatial distributions of basal drag for the winter seasons of 1995, 2008 and 2011. This "inverse" method is based on minimising discrepancy between modelled and observed surface velocities, using satellite remotely sensed velocity fields. We generate steady-state temperature distributions for 1995 and 2011. Frictional heating caused by basal sliding contributes significantly to basal temperatures of the B3 outlet glacier, with heat advection (a longer-timescale process than frictional heating) also being important in the steady state. We present a sensitivity experiment consisting of transient simulations under present-day forcing to demonstrate that using a temporally fixed basal drag field obtained through inversion can lead to thickness change errors of the order of 2 m year−1. Hence it is essential to incorporate the evolution of basal processes in future projections of the evolution of B3. Informed by a combination of our inverse method results and previous studies, we hypothesise a system of processes and feedbacks involving till deformation and basal hydrology to explain both the seasonal accelerations (short residence time pooling of meltwater at the ice–till interface) and the ongoing interannual speed-up (gradual penetration of water into the till, reducing till strength).
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference45 articles.
1. Ahrens, J., Geveci, B., and Law, C.: 36 – ParaView: An End-User Tool for Large-Data Visualization, in: Visualization Handbook, edited by Hansen, C. D. and Johnson, C. R., 717 pp. – LXXII, Butterworth-Heinemann, Burlington, https://doi.org/10.1016/B978-012387582-2/50038-1, 2005. 2. Anandakrishnan, S. and Alley, R.: Stagnation of ice stream C, West Antarctica by water piracy, Geophys. Res. Lett., 24, 265–268, https://doi.org/10.1029/96GL04016, 1997. 3. Arthern, R. J. and Gudmundsson, G. H.: Initialization of ice-sheet forecasts viewed as an inverse Robin problem, J. Glaciol., 56, 527–533, 2010. 4. Bevan, S., Luckman, A., Murray, T., Sykes, H., and Kohler, J.: Positive mass balance during the late 20th century on Austfonna, Svalbard, revealed using satellite radar interferometry, in: Ann. Glaciol., VOL 46, 2007, edited by Sharp, M, vol. 46 of \\em Ann. Glaciol.\\/, pp. 117–122, Int Glaciol Soc; British Antarct Res; IUGG Commiss Cryospher Sci; World Climate Res Program Climate & Cryosphere Project, Int Glaciological Soc, Lensfield rd, Cambridge CB2 1ER, England, https://doi.org/10.3189/172756407782871477, International Symposium on Cryospheric Indicators of Global Climate Change, Cambridge, England, 21–25 August, 2006, 2007. 5. Bougamont, M., Price, S., Christoffersen, P., and Payne, A. J.: Dynamic patterns of ice stream flow in a 3-D higher-order ice sheet model with plastic bed and simplified hydrology, J. Geophys. Res.-Earth Surf., 116, F04018, https://doi.org/10.1029/2011JF002025, 2011.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|