Initialization of ice-sheet forecasts viewed as an inverse Robin problem

Author:

Arthern Robert J.,Gudmundsson G. Hilmar

Abstract

AbstractAs simulations of 21st-century climate start to include components with longer timescales, such as ice sheets, the initial conditions for those components will become critical to the forecast. This paper describes an algorithm for specifying the initial state of an ice-sheet model, given spatially continuous observations of the surface elevation, the velocity at the surface and the thickness of the ice. The algorithm can be viewed as an inverse procedure to solve for the viscosity or the basal drag coefficient. It applies to incompressible Stokes flow over an impenetrable boundary, and is based upon techniques used in electric impedance tomography; in particular, the minimization of a type of cost function proposed by Kohn and Vogelius. The algorithm can be implemented numerically using only the forward solution of the Stokes equations, with no need to develop a separate adjoint model. The only requirement placed upon the numerical Stokes solver is that boundary conditions of Dirichlet, Neumann and Robin types can be implemented. As an illustrative example, the algorithm is applied to shear flow down an impenetrable inclined plane. A fully three-dimensional test case using a commercially available solver for the Stokes equations is also presented.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3