Links between seasonal suprapermafrost groundwater, the hydrothermal change of the active layer, and river runoff in alpine permafrost watersheds

Author:

Qin Jia,Ding Yongjian,Shi Faxiang,Cui Junhao,Chang Yaping,Han Tianding,Zhao Qiudong

Abstract

Abstract. The seasonal dynamic of the suprapermafrost groundwater significantly affects the runoff generation and confluence in permafrost basins and is a leading issue that must urgently be addressed in hydrological research in cold and alpine regions. In this study, the seasonal dynamic process of the suprapermafrost groundwater level (SGL), vertical gradient changes of soil temperature (ST), moisture content in the active layer (AL), and river level changes were analyzed at four permafrost watersheds in the Qinghai–Tibet Plateau using comparative analysis and the nonlinear correlation evaluation method. The impact of freeze–thaw processes on seasonal SGL and the links between SGL and surface runoff were also investigated. The SGL process in a hydrological year can be divided into four periods: (A) a rapid falling period (October to mid-November), (B) a stable low-water period (late November to May), (C) a rapid rising period (approximately June), and (D) a stable high-water period (July to September), which synchronously respond to seasonal variations in soil moisture and temperature in the AL. The characteristics and causes of SGL changes significantly varied during these four periods. The freeze–thaw process of the AL regulated SGL and surface runoff in permafrost watersheds. During period A, with rapid AL freezing, the ST had a dominant impact on the SGL. In period B, the AL was entirely frozen due to the stably low ST, while the SGL dropped to the lowest level with small changes. During period C, ST in the deep soil layers of AL (below 50 cm depth) significantly impacted the SGL (nonlinear correlation coefficient R2 > 0.74, P < 0.05), whereas the SGL change in the shallow soil layer (0–50 cm depth) showed a closer association with soil moisture content. Rainfall was the major cause for the stable high SGL during period D. In addition, the SGLs in periods C and D were closely linked to the retreat and flood processes of river runoff. The SGL contributed approximately 57.0 %–65.8 % of the river runoff changes in the period D. These findings will help to facilitate future hydrological research in the permafrost basins and the development and utilization of water resources in cold and alpine regions.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3