Soil moisture modeling with ERA5-Land retrievals, topographic indices, and in situ measurements and its use for predicting ruts

Author:

Schönauer MarianORCID,Ågren Anneli M.ORCID,Katzensteiner Klaus,Hartsch Florian,Arp Paul,Drollinger SimonORCID,Jaeger Dirk

Abstract

Abstract. Spatiotemporal modeling is an innovative way of predicting soil moisture and has promising applications that support sustainable forest operations. One such application is the prediction of rutting, since rutting can cause severe damage to forest soils and ecological functions. In this work, we used ERA5-Land soil moisture retrievals and several topographic indices to model variations in the in situ soil water content by means of a random forest model. We then correlated the predicted soil moisture with rut depth from different trials. Our spatiotemporal modeling approach successfully predicted soil moisture with Kendall's rank correlation coefficient of 0.62 (R2 of 64 %). The final model included the spatial depth-to-water index, topographic wetness index, stream power index, as well as temporal components such as month and season, and ERA5-Land soil moisture retrievals. These retrievals were shown to be the most important predictor in the model, indicating a large temporal variation. The prediction of rut depth was also successful, resulting in Kendall's correlation coefficient of 0.61. Our results demonstrate that by using data from several sources, we can accurately predict soil moisture and use this information to predict rut depth. This has practical applications in reducing the impact of heavy machinery on forest soils and avoiding wet areas during forest operations.

Funder

Horizon 2020

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3