Differential absorption radar techniques: water vapor retrievals
-
Published:2016-06-21
Issue:6
Volume:9
Page:2633-2646
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Millán Luis,Lebsock Matthew,Livesey Nathaniel,Tanelli Simone
Abstract
Abstract. Two radar pulses sent at different frequencies near the 183 GHz water vapor line can be used to determine total column water vapor and water vapor profiles (within clouds or precipitation) exploiting the differential absorption on and off the line. We assess these water vapor measurements by applying a radar instrument simulator to CloudSat pixels and then running end-to-end retrieval simulations. These end-to-end retrievals enable us to fully characterize not only the expected precision but also their potential biases, allowing us to select radar tones that maximize the water vapor signal minimizing potential errors due to spectral variations in the target extinction properties. A hypothetical CloudSat-like instrument with 500 m by ∼ 1 km vertical and horizontal resolution and a minimum detectable signal and radar precision of −30 and 0.16 dBZ, respectively, can estimate total column water vapor with an expected precision of around 0.03 cm, with potential biases smaller than 0.26 cm most of the time, even under rainy conditions. The expected precision for water vapor profiles was found to be around 89 % on average, with potential biases smaller than 77 % most of the time when the profile is being retrieved close to surface but smaller than 38 % above 3 km. By using either horizontal or vertical averaging, the precision will improve vastly, with the measurements still retaining a considerably high vertical and/or horizontal resolution.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference47 articles.
1. Abel, S. J. and Boutle, I. A.: An improved representation of the raindrop size distribution for single-moment microphysics schemes, Q. J. Roy. Meteorol. Soc., 138, 2151–2162, 2012. 2. Anderson, E.: Statement of guidance for global numerical weather prediction (NWP), available at: https://www.wmo.int/pages/prog/www/OSY/GOS-RRR.html (last access: 1 March 2016), 2014. 3. Anderson, E., Hólm, E., Bauer, P., Beljaars, A., Kelly, G. A., McNally, A. P., Simmons, A. J., Thépaut, J.-N., and Tompkins, A. M.: Analysis and forecast impact of the main humidity observing systems, Q. J. Roy. 4. Ao, C. O., Meehan, T. K., Hajj, G. A., Mannucci, A. J., and Beyerle, G.: Lower troposphere refractivity bias in GPS occultation retrievals, J. Geophys. Res., 108, 4577, https://doi.org/10.1029/2002JD003216, 2003. Meteorol. Soc., 133, 1473–1485, https://doi.org/10.1002/qj.112, 2007. 5. Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products and processing system, IEEE T. Geosci. Remote, 41, 253–264, 2003.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|