Ozone formation sensitivity study using machine learning coupled with the reactivity of volatile organic compound species

Author:

Zhan Junlei,Liu YongchunORCID,Ma Wei,Zhang Xin,Wang Xuezhong,Bi Fang,Zhang Yujie,Wu Zhenhai,Li Hong

Abstract

Abstract. The formation of ground-level ozone (O3) is dependent on both atmospheric chemical processes and meteorological factors. In this study, a random forest (RF) model coupled with the reactivity of volatile organic compound (VOC) species was used to investigate the O3 formation sensitivity in Beijing, China, from 2014 to 2016, and evaluate the relative importance (RI) of chemical and meteorological factors to O3 formation. The results showed that the O3 prediction performance using concentrations of measured/initial VOC species (R2=0.82/0.81) was better than that using total VOC (TVOC) concentrations (R2=0.77). Meanwhile, the RIs of initial VOC species correlated well with their O3 formation potentials (OFPs), which indicate that the model results can be partially explained by the maximum incremental reactivity (MIR) method. O3 formation presented a negative response to nitrogen oxides (NOx) and relative humidity (RH), and a positive response to temperature (T), solar radiation (SR), and VOCs. The O3 isopleth calculated by the RF model was generally comparable with those calculated by the box model. O3 formation shifted from a VOC-limited regime to a transition regime from 2014 to 2016. This study demonstrates that the RF model coupled with the initial concentrations of VOC species could provide an accurate, flexible, and computationally efficient approach for O3 sensitivity analysis.

Funder

Beijing Municipal Science and Technology Commission

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3