1. [1]. E. E. A. (EEA), “Air Quality in Europe 2022 Report,” Publications Office, https://doi.org/10.2800/488115. ISBN: 978-92-9480-515-7, (2022).
2. [2]. J. v. d. H. D. Z. P. v. R. S. Duyzer, “Representativeness of air quality monitoring networks,” Atmos. Environ., vol. 104, p. 88–101, (2015).
3. [3]. G. M. A. M. W. P. E. &. A. E. Raimondo, “A machine learning tool to forecast PM10 level,” in AMS 87th Annual Meeting, San Antonio, TX, USA, (2007).
4. [4]. G. Raimondo, A. Montuori, W. Moniaci, E. Pasero and E. Almkvist, “A Machine Learning Tool to Forecast PM10 Level,” in The Fifth Conference on Artificial Intelligence Applications to Environmental Science, San Antonio, TX, USA, (2007).
5. [5]. R. Y. Y. Y. L. H. G. &. M. O. A. Yu, “RAQ–A random forest approach for predicting air quality in urban sensing systems,” Sensors, vol. 16, no. 86, (2016).