Data-driven catchment classification: application to the pub problem

Author:

Di Prinzio M.,Castellarin A.,Toth E.

Abstract

Abstract. A promising approach to catchment classification makes use of unsupervised neural networks (Self Organising Maps, SOM's), which organise input data through non-linear techniques depending on the intrinsic similarity of the data themselves. Our study considers ∼300 Italian catchments scattered nationwide, for which several descriptors of the streamflow regime and geomorphoclimatic characteristics are available. We compare a reference classification, identified by using indices of the streamflow regime as input to SOM, with four alternative classifications, which were identified on the basis of catchment descriptors that can be derived for ungauged basins. One alternative classification adopts the available catchment descriptors as input to SOM, the remaining classifications are identified by applying SOM to sets of derived variables obtained by applying Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA) to the available catchment descriptors. The comparison is performed relative to a PUB problem, that is for predicting several streamflow indices in ungauged basins. We perform an extensive cross-validation to quantify nationwide the accuracy of predictions of mean annual runoff, mean annual flood, and flood quantiles associated with given exceedance probabilities. Results of the study indicate that performing PCA and, in particular, CCA on the available set of catchment descriptors before applying SOM significantly improves the effectiveness of SOM classifications by reducing the uncertainty of hydrological predictions in ungauged sites.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3