1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jozefowicz, R., Jia, Y., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Schuster, M., Monga, R., Moore, S., Murray, D., Olah, C., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y. and Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.
2. A hierarchical approach for the regionalization of precipitation annual maxima in Canada;Alila;J. Geophys. Res. Atmospheres,1999
3. A data-based assessment of the dependence of short-duration precipitation on elevation;Allamano;Physics and Chemistry of the Earth,2009
4. Blöschl G., 2011. Scaling and Regionalization in Hydrology. In: Treatise on Water Science. Elsevier. 519–535. https://doi.org/10.1016/B978-0-444-53199-5.00113-5.
5. The probability distribution of daily streamflow in the United States;Blum;Hydrol. Earth Syst. Sci.,2017