Simplifying a hydrological ensemble prediction system with a backward greedy selection of members – Part 1: Optimization criteria

Author:

Brochero D.,Anctil F.,Gagné C.

Abstract

Abstract. Hydrological Ensemble Prediction Systems (HEPS), obtained by forcing rainfall-runoff models with Meteorological Ensemble Prediction Systems (MEPS), have been recognized as useful approaches to quantify uncertainties of hydrological forecasting systems. This task is complex both in terms of the coupling of information and computational time, which may create an operational barrier. The main objective of the current work is to assess the degree of simplification (reduction of the number of hydrological members) that can be achieved with a HEPS configured using 16 lumped hydrological models driven by the 50 weather ensemble forecasts from the European Centre for Medium-range Weather Forecasts (ECMWF). Here, Backward Greedy Selection (BGS) is proposed to assess the weight that each model must represent within a subset that offers similar or better performance than a reference set of 800 hydrological members. These hydrological models' weights represent the participation of each hydrological model within a simplified HEPS which would issue real-time forecasts in a relatively short computational time. The methodology uses a variation of the k-fold cross-validation, allowing an optimal use of the information, and employs a multi-criterion framework that represents the combination of resolution, reliability, consistency, and diversity. Results show that the degree of reduction of members can be established in terms of maximum number of members required (complexity of the HEPS) or the maximization of the relationship between the different scores (performance).

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3