A Stochastic Data‐Driven Ensemble Forecasting Framework for Water Resources: A Case Study Using Ensemble Members Derived From a Database of Deterministic Wavelet‐Based Models
Author:
Affiliation:
1. Department of Bioresource EngineeringMcGill University Montreal Quebec Canada
2. Department of Civil and Building EngineeringUniversité de Sherbrooke Sherbrooke Quebec Canada
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
American Geophysical Union (AGU)
Subject
Water Science and Technology
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2018WR023205
Reference105 articles.
1. A Spectral Analysis Based Methodology to Detect Climatological Influences on Daily Urban Water Demand
2. Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada
3. A Model Ranking Based Selective Ensemble Approach for Time Series Forecasting
4. Toward multi-day-ahead forecasting of suspended sediment concentration using ensemble models
5. Estimation of residential water demand: a state-of-the-art review
Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Unleashing the power of artificial neural networks: accurate estimation of monthly averaged daily wind power at Adama wind farm I, Ethiopia;Environmental Research Communications;2024-07-01
2. A hybrid model coupling process-driven and data-driven models for improved real-time flood forecasting;Journal of Hydrology;2024-07
3. Introductory Chapter: Hydrology – Tracing the Past, Understanding the Present, Shaping the Future;Hydrology - Current Research and Future Directions;2024-06-05
4. A deep learning modeling framework with uncertainty quantification for inflow-outflow predictions for cascade reservoirs;Journal of Hydrology;2024-02
5. Data‐driven modeling to enhance municipal water demand estimates in response to dynamic climate conditions;JAWRA Journal of the American Water Resources Association;2023-12-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3