Unleashing the power of artificial neural networks: accurate estimation of monthly averaged daily wind power at Adama wind farm I, Ethiopia

Author:

Woldegiyorgis Tegenu ArgawORCID,Benti Natei Ermias,Habtemicheal Birhanu Asmerom,Jembrie Ashenafi Admasu

Abstract

Abstract Wind power plays a vital role in the electricity generation of many countries, including Ethiopia. It serves as a valuable complement to hydropower during the dry season, and its affordability is crucial for the growth of industrial centers. However, accurately estimating wind energy poses significant challenges due to its random nature, severe variability, and dependence on wind speed. Numerous techniques have been employed to tackle this problem, and recent research has shown that Artificial Neural Network (ANN) models excel in prediction accuracy. This study aims to assess the effectiveness of different ANN network types in estimating the monthly average daily wind power at Adama Wind Farm I. The collected data was divided into three sets: training (70%), testing (15%), and validation (15%). Four network types, namely Feedforward Backpropagation (FFBP), Cascade Feedforward Backpropagation (CFBP), Error Backpropagation (EBP), and Levenberg–Marquardt (LR), were utilized with seven input parameters for prediction. The performance of these networks was evaluated using Mean Absolute Percentage Error (MAPE) and R-squared (R2). The EBP network type demonstrated exceptional performance in estimating wind power for all wind turbines in Groups GI, GII, and GIII. Additionally, all proposed network types achieved impressive accuracy levels with MAPE ranging from 0.0119 to 0.0489 and R2 values ranging from 0.982 to 0.9989. These results highlight the high predictive accuracy attained at the study site. Consequently, we can conclude that the ANN model’s network types were highly effective in predicting the monthly averaged daily wind power at Adama Wind Farm I. By leveraging the power of ANN models, this research contributes to improving wind energy estimation, thereby enabling more reliable and efficient utilization of wind resources. The findings of this study have practical implications for the wind energy industry and can guide decision-making processes regarding wind power generation and integration into the energy mix.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3