Carbon Monitoring System Flux Net Biosphere Exchange 2020 (CMS-Flux NBE 2020)
-
Published:2021-02-10
Issue:2
Volume:13
Page:299-330
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Liu JunjieORCID, Baskaran Latha, Bowman KevinORCID, Schimel DavidORCID, Bloom A. Anthony, Parazoo Nicholas C.ORCID, Oda Tomohiro, Carroll Dustin, Menemenlis DimitrisORCID, Joiner JoannaORCID, Commane RoisinORCID, Daube Bruce, Gatti Lucianna V.ORCID, McKain KathrynORCID, Miller JohnORCID, Stephens Britton B.ORCID, Sweeney ColmORCID, Wofsy Steven
Abstract
Abstract. Here we present a global and regionally resolved terrestrial net
biosphere exchange (NBE) dataset with corresponding uncertainties between
2010–2018: Carbon Monitoring System Flux Net Biosphere Exchange 2020 (CMS-Flux NBE 2020). It is estimated using the NASA Carbon
Monitoring System Flux (CMS-Flux) top-down flux inversion system that
assimilates column CO2 observations from the Greenhouse Gases Observing Satellite (GOSAT) and NASA's Observing Carbon Observatory 2 (OCO-2). The
regional monthly fluxes are readily accessible as tabular files, and the
gridded fluxes are available in NetCDF format. The fluxes and their
uncertainties are evaluated by extensively comparing the posterior CO2
mole fractions with CO2 observations from aircraft and the NOAA
marine boundary layer reference sites. We describe the characteristics of
the dataset as the global total, regional climatological mean, and regional
annual fluxes and seasonal cycles. We find that the global total fluxes of
the dataset agree with atmospheric CO2 growth observed by the
surface-observation network within uncertainty. Averaged between 2010 and
2018, the tropical regions range from close to neutral in tropical South
America to a net source in Africa; these contrast with the extra-tropics,
which are a net sink of 2.5±0.3 Gt C/year. The
regional satellite-constrained NBE estimates provide a unique perspective
for understanding the terrestrial biosphere carbon dynamics and monitoring
changes in regional contributions to the changes of atmospheric CO2
growth rate. The gridded and regional aggregated dataset can be accessed at
https://doi.org/10.25966/4v02-c391 (Liu et al., 2020).
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference81 articles.
1. Arellano Jr., A. F., Kasibhatla, P. S., Giglio, L., Van der Werf, G. R.,
Randerson, J. T., and Collatz, G. J.: Time-dependent inversion estimates of
global biomass-burning CO emissions using Measurement of Pollution in the
Troposphere (MOPITT) measurements, J. Geophys. Res.-Atmos., 111, D09303,
https://doi.org/10.1029/2005JD006613, 2006. 2. Baker, D. F., Doney, S. C., and Schimel, D. S.: Variational data assimilation
for atmospheric CO2, Tellus B, 58, 359–365,
https://doi.org/10.1111/j.1600-0889.2006.00218.x, 2006a. 3. Baker, D. F., Law, R. M., Gurney, K. R., Rayner, P., Peylin, P., Denning, A. S.,
Bousquet, P., Bruhwiler, L., Chen, Y. H., Ciais, P., and Fung, I. Y.: TransCom
3 inversion intercomparison: Impact of transport model errors on the
interannual variability of regional CO2 fluxes, 1988–2003, Global
Biogeochem. Cy., 20, GB1002, https://doi.org/10.1029/2004GB002439, 2006b. 4. Bastos, A., Friedlingstein, P., Sitch, S., Chen, C., Mialon, A., Wigneron,
J.-P., Arora, V. K., Briggs, P. R., Canadell, J. G., and Ciais, P.: Impact
of the 2015/2016 El Niño on the terrestrial carbon cycle constrained by
bottom-up and top-down approaches, Philos. T. R. Soc. Lond. B., 373, 1760, https://doi.org/10.1098/rstb.2017.0304, 2018. 5. Bloom, A. A., Exbrayat, J. F., van der Velde, I. R., Feng, L., and Williams,
M.: The decadal state of the terrestrial carbon cycle: Global retrievals of
terrestrial carbon allocation, pools, and residence times, P. Natl. Acad.
Sci. USA, 113, 1285–1290, 2016.
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|