Recent geodetic mass balance of Monte Tronador glaciers, northern Patagonian Andes
-
Published:2017-02-24
Issue:1
Volume:11
Page:619-634
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Ruiz LucasORCID, Berthier EtienneORCID, Viale Maximiliano, Pitte Pierre, Masiokas Mariano H.
Abstract
Abstract. Glaciers in the northern Patagonian Andes (35–46° S) have shown a dramatic decline in area in the last decades. However, little is known about glacier mass balance changes in this region. This study presents a geodetic mass balance estimate of Monte Tronador (41.15° S; 71.88° W) glaciers by comparing a Pléiades digital elevation model (DEM) acquired in 2012 with the Shuttle Radar Topography Mission (SRTM) X-band DEM acquired in 2000. We find a slightly negative Monte-Tronador-wide mass budget of −0.17 m w.e. a−1 (ranging from −0.54 to 0.14 m w.e. a−1 for individual glaciers) and a slightly negative trend in glacier extent (−0.16 % a−1) over the 2000–2012 period. With a few exceptions, debris-covered valley glaciers that descend below a bedrock cliff are losing mass at higher rates, while mountain glaciers with termini located above this cliff are closer to mass equilibrium. Climate variations over the last decades show a notable increase in warm season temperatures in the late 1970s but limited warming afterwards. These warmer conditions combined with an overall drying trend may explain the moderate ice mass loss observed at Monte Tronador. The almost balanced mass budget of mountain glaciers suggests that they are probably approaching a dynamic equilibrium with current (post-1977) climate, whereas the valley glaciers tongues will continue to retreat. The slightly negative overall mass budget of Monte Tronador glaciers contrasts with the highly negative mass balance estimates observed in the Patagonian ice fields further south.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference56 articles.
1. Berthier, E. and Vincent, C.: Relative contribution of surface mass-balance and ice-flux changes to the accelerated thinning of Mer de Glace, French Alps, over 1979–2008, J. Glaciol., 58, 501–512, https://doi.org/10.3189/2012JoG11J083, 2012. 2. Berthier, E., Arnaud, Y., Baratoux, D., Vincent, C., and Remy, F.: Recent rapid thinning of the ”Mer de Glace” glacier derived from satellite optical images, Geophys. Res. Lett., 31, L17401, https://doi.org/10.1029/2004GL020706, 2004. 3. Berthier, E., Arnaud, Y., Kumar, R., Ahmad, S., Wagnon, P., and Chevallier, P.: Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India), Remote Sens. Environ., 108, 327–338, https://doi.org/10.1016/j.rse.2006.11.017, 2007. 4. Berthier, E., Vincent, C., Magnússon, E., Gunnlaugsson, Á. þ., Pitte, P., Le Meur, E., Masiokas, M., Ruiz, L., Pálsson, F., Belart, J. M. C., and Wagnon, P.: Glacier topography and elevation changes derived from Pléiades sub-meter stereo images, The Cryosphere, 8, 2275–2291, https://doi.org/10.5194/tc-8-2275-2014, 2014. 5. Bown, F. and Rivera, A.: Climate changes and recent glacier behaviour in the Chilean Lake District, Glob. Planet. Change, 59, 79–86, https://doi.org/10.1016/j.gloplacha.2006.11.015, 2007.
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|