Hydrological response of Andean catchments to recent glacier mass loss

Author:

Caro AlexisORCID,Condom ThomasORCID,Rabatel AntoineORCID,Champollion Nicolas,García NicolásORCID,Saavedra FreddyORCID

Abstract

Abstract. The impacts of the accelerated glacier retreat in recent decades on glacier runoff changes are still unknown in most Andean catchments, increasing uncertainties in estimating water availability. This particularly affects the outer tropics and Dry Andes, heavily impacted by prolonged droughts. Current global estimates overlook climatic and morphometric disparities, which significantly influence model parameters, among Andean glaciers. Meanwhile, local studies have used different approaches to estimate glacier runoff in a few catchments. Improving 21st-century glacier runoff projections relies on calibrating and validating models using corrected historical climate inputs and calibrated parameters across diverse glaciological zones. Here, we simulate glacier evolution and related runoff changes between the periods 2000–2009 and 2010–2019 across 786 Andean catchments (11 282 km2 of glacierized area, 11° N to 55° S) using the Open Global Glacier Model (OGGM). TerraClimate atmospheric variables were corrected using in situ data, getting a mean temperature bias by up to 2.1 °C and enhanced monthly precipitation. Glacier mass balance and volume were calibrated, where melt factor and the Glen A parameter exhibited significant alignment with varying environmental conditions. Simulation outcomes were validated against in situ data in three documented catchments (with a glacierized area > 8 %) and monitored glaciers. Our results at the Andes scale reveal an average reduction of 8.3 % in glacier volume and a decrease of 2.2 % in surface area between the periods 2000–2009 and 2010–2019. Comparing these two periods, glacier and climate variations have led to a 12 % increase in mean annual glacier melt (86.5 m3 s−1) and a decrease in rainfall on glaciers of −2 % (−7.6 m3 s−1) across the Andes, with both variables comprising the glacier runoff. We confirmed the utility of our corrected regional simulations of glacier runoff contribution at the catchment scale, where our estimations align with previous studies (e.g., Maipo 34° S, Chile) as well as provide new insights on the seasonal glaciers' largest contribution (e.g., La Paz 16° S, Bolivia) and new estimates of glacier runoff contribution (e.g., Baker 47° S, Chile).

Funder

Agencia Nacional de Investigación y Desarrollo

Publisher

Copernicus GmbH

Reference79 articles.

1. Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.: TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015, Sci. Data, 5, 1–12, https://doi.org/10.1038/sdata.2017.191, 2018.

2. Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018.

3. Autin, P., Sicart, J. E., Rabatel, A., Soruco, A., and Hock, R.: Climate Controls on the Interseasonal and Interannual Variability of the Surface Mass and Energy Balances of a Tropical Glacier (Zongo Glacier, Bolivia, 16° S): New Insights From the Multi-Year Application of a Distributed Energy Balance Model, J. Geophys. Res.-Atmos., 127, e2021JD035410, https://doi.org/10.1029/2021JD035410, 2022.

4. Ayala, Á., Pellicciotti, F., MacDonell, S., McPhee, J., and Burlando, P.: Patterns of glacier ablation across North-Central Chile: Identifying the limits of empirical melt models under sublimation-favorable conditions, Water Resour. Res., 53, 5601–5625, https://doi.org/10.1002/2016WR020126, 2017.

5. Ayala, Á., Farías-Barahona, D., Huss, M., Pellicciotti, F., McPhee, J., and Farinotti, D.: Glacier runoff variations since 1955 in the Maipo River basin, in the semiarid Andes of central Chile, The Cryosphere, 14, 2005–2027, https://doi.org/10.5194/tc-14-2005-2020, 2020.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3