Development and intercity transferability of land-use regression models for predicting ambient PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub> and O<sub>3</sub> concentrations in northern Taiwan

Author:

Li Zhiyuan,Ho Kin-Fai,Chuang Hsiao-Chi,Yim Steve Hung Lam

Abstract

Abstract. To provide long-term air pollutant exposure estimates for epidemiological studies, it is essential to test the feasibility of developing land-use regression (LUR) models using only routine air quality measurement data and to evaluate the transferability of LUR models between nearby cities. In this study, we developed and evaluated the intercity transferability of annual-average LUR models for ambient respirable suspended particulates (PM10), fine suspended particulates (PM2.5), nitrogen dioxide (NO2) and ozone (O3) in the Taipei–Keelung metropolitan area of northern Taiwan in 2019. Ambient PM10, PM2.5, NO2 and O3 measurements at 30 fixed-site stations were used as the dependent variables, and a total of 156 potential predictor variables in six categories (i.e., population density, road network, land-use type, normalized difference vegetation index, meteorology and elevation) were extracted using buffer spatial analysis. The LUR models were developed using the supervised forward linear regression approach. The LUR models for ambient PM10, PM2.5, NO2 and O3 achieved relatively high prediction performance, with R2 values of > 0.72 and leave-one-out cross-validation (LOOCV) R2 values of > 0.53. The intercity transferability of LUR models varied among the air pollutants, with transfer-predictive R2 values of > 0.62 for NO2 and < 0.56 for the other three pollutants. The LUR-model-based 500 m × 500 m spatial-distribution maps of these air pollutants illustrated pollution hot spots and the heterogeneity of population exposure, which provide valuable information for policymakers in designing effective air pollution control strategies. The LUR-model-based air pollution exposure estimates captured the spatial variability in exposure for participants in a cohort study. This study highlights that LUR models can be reasonably established upon a routine monitoring network, but there exist uncertainties when transferring LUR models between nearby cities. To the best of our knowledge, this study is the first to evaluate the intercity transferability of LUR models in Asia.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3