Joint cloud water path and rainwater path retrievals from airborne ORACLES observations

Author:

Dzambo Andrew M.ORCID,L'Ecuyer TristanORCID,Sinclair KennethORCID,van Diedenhoven BastiaanORCID,Gupta SiddhantORCID,McFarquhar GregORCID,O'Brien Joseph R.,Cairns Brian,Wasilewski Andrzej P.,Alexandrov Mikhail

Abstract

Abstract. This study presents a new algorithm that combines W-band reflectivity measurements from the Airborne Precipitation Radar – third generation (APR-3) passive radiometric cloud optical depth and effective radius retrievals from the Research Scanning Polarimeter (RSP) to estimate total liquid water path in warm clouds and identify the contributions from cloud water path (CWP) and rainwater path (RWP). The resulting CWP estimates are primarily determined by the optical depth input, although reflectivity measurements contribute ∼10 %–50 % of the uncertainty due to attenuation through the profile. Uncertainties in CWP estimates across all conditions are 25 % to 35 %, while RWP uncertainty estimates frequently exceed 100 %. Two-thirds of all radar-detected clouds observed during the ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) campaign that took place from 2016–2018 over the southeast Atlantic Ocean have CWP between 41 and 168 g m−2 and almost all CWPs (99 %) between 6 to 445 g m−2. RWP, by contrast, typically makes up a much smaller fraction of total liquid water path (LWP), with more than 70 % of raining clouds having less than 10 g m−2 of rainwater. In heavier warm rain (i.e., rain rate exceeding 40 mm h−1 or 1000 mm d−1), however, RWP is observed to exceed 2500 g m−2. CWP (RWP) is found to be approximately 30 g m−2 (7 g m−2) larger in unstable environments compared to stable environments. Surface precipitation is also more than twice as likely in unstable environments. Comparisons against in situ cloud microphysical probe data spanning the range of thermodynamic stability and meteorological conditions encountered across the southeast Atlantic basin demonstrate that the combined APR-3 and RSP dataset enable a robust joint cloud–precipitation retrieval algorithm to support future ORACLES precipitation susceptibility and cloud–aerosol–precipitation interaction studies.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3